Skip to main content

Distributing the Key Distribution Centre in Sakai–Kasahara Based Systems

  • Conference paper
Cryptography and Coding (IMACC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5921))

Included in the following conference series:

Abstract

One major drawback with using Sakai–Kasahara based identity-based secret keys is that it appears hard to distribute the trust of the key generation centre. For other types of identity based key this distribution can be done using non-interactive and simple techniques. In this short note we explain how this can be done for Sakai–Kasahara style keys using a simple application of a general technique from multi-party computation. The self-checking property of the resulting private key we show can be used to insulate the protocol from malicious adversaries for many practical parameter sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds on interaction. In: Principles of Distributed Computing – PODC 1989, pp. 201–209. ACM Press, New York (1989)

    Chapter  Google Scholar 

  2. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: 20th STOC, pp. 1–10 (1988)

    Google Scholar 

  5. Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Multiparty computation goes live. Cryptology ePrint Archive, Report 2008/068 (2008), http://eprint.iacr.org/

  6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  7. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Boyen, X.: General ad-hoc encryption from exponent inversion IBE. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Chaum, D., Crepeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988)

    Google Scholar 

  11. Chen, L., Cheng, Z.: Security proof of Sakai–Kasahara’s identity-based encryption scheme. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 442–459. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Chen, L., Cheng, Z., Malone-Lee, J., Smart, N.P.: Efficient ID-KEM based on the Sakai–Kasahara key construction. IEE Proceedings - Information Security 153, 19–26 (2006)

    Article  Google Scholar 

  13. Cramer, R., Damgård, I., Maurer, U.: General secure multiparty computation from any linear secret sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation, an introduction. Manuscript, May 25th (2008)

    Google Scholar 

  15. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty computation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

    Google Scholar 

  16. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fast-track multi-party computation with applications to threshold cryptography. In: Principles of Distributed Computing – PODC 1989, pp. 101–111. ACM Press, New York (1998)

    Chapter  Google Scholar 

  17. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic curve (in Japanese). In: The 2001 Symposium on Cryptography and Information Security, Oiso, Japan (January 2001)

    Google Scholar 

  18. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve. Cryptology ePrint Archive, Report 2003/054 (2003)

    Google Scholar 

  19. SCET: Secure Computing Economy and Trust. Homepage: http://sikkerhed.alexandra.dk/uk/projects/scet

  20. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  22. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. SIMAP: Secure Information Management and Processing. Homepage: http://sikkerhed.alexandra.dk/uk/projects/simap

  24. VIFF: Virtual Ideal Functionality Framework. Homepage: http://viff.dk/

  25. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geisler, M., Smart, N.P. (2009). Distributing the Key Distribution Centre in Sakai–Kasahara Based Systems. In: Parker, M.G. (eds) Cryptography and Coding. IMACC 2009. Lecture Notes in Computer Science, vol 5921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10868-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10868-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10867-9

  • Online ISBN: 978-3-642-10868-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics