Skip to main content

The Molecular Mechanisms of Reaction Wood Induction

  • Chapter
  • First Online:
The Biology of Reaction Wood

Abstract

Reaction wood originates from cambial activity which adjust cell division activity, proportion of fibres, cell wall structure and properties, so that the resulting growth event will be the appropriate response to endogenous and environmental stimuli.

When addressing the question of the induction of reaction wood formation, the physical parameters inducing reaction wood are first presented leading to discuss the importance of gravisensing versus proprioception (sensing of the local curvature of the stem) in this process.

Molecular candidates for the perception of cellular deformation that is hypothesized to occur in a gravistimulated stem are located at the CPMCW (cytoskeleton–plasma membrane–cell wall) continuum. These candidates would mediate intracellular signalling. Insights from global approaches (e.g. transcriptome and proteome analyses) performed on tilted trees suggest calcium, reactive oxygen species and phosphatidylinositol signalling in the gravitropism sensing network. It has been unambiguously shown that several of the aux/IAA gene family mediators of auxin signal transduction pathway change on induction of tension wood formation. Gibberellins and ethylene seem also to be involved in reaction wood formation. The role of these different plant hormones in upstream primary response to reaction wood sensing or alternatively in the transmission of the signal from the perception to the reaction wood forming cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    CAS  PubMed  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Allen GJ, Muir SR, Sanders D (1995) Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268:735–737

    CAS  PubMed  Google Scholar 

  • Allona I, Quinn M, Shoop E, Swope K, Saint Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci U S A 95:9693–9698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almeras T, Fournier M (2009) Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J Theor Biol 256:370–381

    CAS  PubMed  Google Scholar 

  • Almeras T, Costes E, Salles JC (2004) Identification of biomechanical factors involved in stem shape variability between apricot tree varieties. Ann Bot 93:455–468

    PubMed  Google Scholar 

  • Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg B (2003) Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349

    PubMed  Google Scholar 

  • Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    PubMed  Google Scholar 

  • Azri W, Chambon C, Herbette S, Brunel N, Coutand C, Leplé JC, Ben Rejeb I, Ammar S, Julien JL, Roeckel-Drevet P (2009) Proteome analysis of apical and basal regions of poplar stems under gravitropic stimulation. Physiol Plant 136:193–208

    CAS  PubMed  Google Scholar 

  • Azri W, Brunel N, Franchel J, Ben Rejeb I, Jacquot JP, Julien J-L, Herbette S, Roeckel-Drevet P (2013) Putative involvement of thioredoxin h in early response to gravitropic stimulation of poplar stems. J Plant Physiol 170:707–711

    CAS  PubMed  Google Scholar 

  • Baba K, Adachi K, Take T, Yokoyama T, Ito T, Nakamura T (1995) Induction of tension wood in GA3-treated branches of the weeping type of Japanese cherry, Prunus spachiana. Plant Cell Physiol 36:983–988

    CAS  Google Scholar 

  • Baluška F, Volkmann D (2011) Mechanical aspects of gravity-controlled growth, development and morphogenesis. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants, Signaling and communication in plants. Springer-Verlag GmbH, Heidelberg, pp 195–222

    Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    PubMed Central  PubMed  Google Scholar 

  • Bastien R, Bohr T, Moulia B, Douady S (2013) Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants. Proc Natl Acad Sci U S A 110:755–760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bedon F, Grima-Pettenati J, Mackay J (2007) Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biol 7:17

    PubMed Central  PubMed  Google Scholar 

  • Berthier S, Stokes A (2005) Phototropic response induced by wind loading in Maritime pine seedlings (Pinus pinaster Ait.). J Exp Bot 56:851–856

    CAS  PubMed  Google Scholar 

  • Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    PubMed  Google Scholar 

  • Booth IR, Blount P (2012) The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol 194:4802–4809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    PubMed  Google Scholar 

  • Celedon PAF, de Andrade A, Xavier Meireles KG, Gallo de Carvalho MC, Gomes Caldas DG, Moon DH, Tozelli Carneiro R, Franceschini LM, Oda S, Labate CA (2007) Proteomic analysis of the cambial region in juvenile Eucalyptus grandis at three ages. Proteomics 7:2258–2274

    CAS  Google Scholar 

  • Collet C, Fournier M, Ningre F, Hounzandji AP, Constant T (2011) Growth and posture control strategies in Fagus sylvatica and Acer pseudoplatanus saplings in response to canopy disturbance. Ann Bot 107:1345–1353

    PubMed  Google Scholar 

  • Correll MJ, Kiss JZ (2002) Interactions between gravitropism and phototropism in plants. J Plant Growth Regul 21:89–101

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    CAS  PubMed  Google Scholar 

  • Costa P, Pionneau C, Bauw G, Dubos C, Bahrmann N, Kremer A, Frigerio J-M, Plomion C (1999) Separation and characterization of needle and xylem maritime pine proteins. Electrophoresis 20:1098–1108

    CAS  PubMed  Google Scholar 

  • Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coutand C, Fournier M, Moulia B (2007) The gravitropic response of poplar trunks: key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation. Plant Physiol 144:1166–1180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    CAS  PubMed  Google Scholar 

  • Déjardin A, Leplé J-C, Lesage-Descauses M-C, Costa G, Pilate G (2004) Expressed sequence tags from poplar wood tissues – a comparative analysis from multiple libraries. Plant Biol 6:55–64

    PubMed  Google Scholar 

  • Ding JP, Pickard BG (1993) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3:713–720

    CAS  PubMed  Google Scholar 

  • Du S, Yamamoto F (2003) A study on the role of calcium in xylem development and compression wood formation in Taxodium distichum seedlings. IAWA J 24:75–85

    Google Scholar 

  • Du S, Sugano M, Tsushima M, Nakamura T, Yamamoto F (2004) Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation. J Plant Res 117:171–174

    CAS  PubMed  Google Scholar 

  • Du S, Yamamoto F (2007) An overview of the biology of reaction wood formation. J Integr Plant Biol 49:131–143

    CAS  Google Scholar 

  • Elo A, Immanen J, Nieminen K, Helariutta Y (2009) Stem cell function during plant vascular development. Semin Cell Dev Biol 20:1097–1106

    CAS  PubMed  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    CAS  PubMed  Google Scholar 

  • Felten J, Sundberg B (2013) Biology, chemistry and structure of tension wood. In: Fromm J (ed) Cellular aspects of wood formation, plant cell monographs 20. Springer, Heidelberg, pp 203–224

    Google Scholar 

  • Fournier M, Chanson B, Thibaut B, Guitard D (1994) Measurements of residual growth strains at the stem surface observations on different species. Ann Sci For 51:249–266

    Google Scholar 

  • Funada R, Kubo T, Fushitani M (1990) Earlywood and latewood formation in Pinus densiflora trees with different amounts of crown. IAWA Bull 11:281–288

    Google Scholar 

  • Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T, Sano Y (2008) Gibberellin-induced formation of tension wood in angiosperm trees. Planta 227:1409–1414

    CAS  PubMed  Google Scholar 

  • Gion J-M, Lalanne C, Le Provost G, Ferry-Dumazet H, Paiva J, Chaumeil P, Frigerio J-M, Brach J, Barré A, de Daruvar A, Claverol S, Bonneu M, Sommerer N, Negroni L, Plomion C (2005) The proteome of maritime pine wood forming tissue. Proteomics 5:3731–3751

    CAS  PubMed  Google Scholar 

  • Gou J, Ma C, Kadmiel M, Gai Y, Strauss S, Jiang X, Busov V (2011) Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above- and below-ground biomass growth through control of bioactive GA concentrations. New Phytol 192:626–639

    CAS  PubMed  Google Scholar 

  • Goué N, Lesage-Descauses M-C, Mellerowicz EJ, Magel E, Label P, Sundberg B (2008) Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusiform initials within the cambial meristem of Populus. New Phytol 180:45–56

    PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haley ANN, Russellt AJ, Wood N, Allan AC, Knight M, Campbell AK (1995) Effects of mechanical signaling on plant cell cytosolic calcium. Proc Natl Acad Sci U S A 92:4124–4128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison BR, Morita MT, Masson PH, Tasaka M (2008) Signal transduction in gravitropism. In: Gilroy S, Masson PH (eds) Plant tropisms. Blackwell Publishing, Oxford, pp 21–46

    Google Scholar 

  • Hashiguchi Y, Tasaka M, Morita MT (2013) Mechanism of higher plant gravity sensing. Am J Bot 100:91–100

    CAS  PubMed  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    CAS  PubMed  Google Scholar 

  • Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19:1356–1369

    CAS  PubMed Central  PubMed  Google Scholar 

  • He ZH, Fujiki M, Kohorn BD (1996) A cell wall-associated, receptor-like protein kinase. J Biol Chem 271:19789–19793

    CAS  PubMed  Google Scholar 

  • He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189–1196

    CAS  PubMed  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Höfte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17:922–931

    PubMed  Google Scholar 

  • Herrera R, Krier C, Lalanne C, Ba EHM, Stokes A, Salin F, Fourcaud T, Claverol S, Plomion C (2010) (Not) keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism. BMC Plant Biol 10:217–229

    PubMed Central  PubMed  Google Scholar 

  • Hohm T, Preuten T, Fankhauser C (2013) Phototropism: translating light into directional growth. Am J Bot 100:47–59

    CAS  PubMed  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Humphrey TV, Bonetta DT, Goring DR (2007) Sentinels at the wall: cell wall receptors and sensors. New Phytol 176:7–21

    CAS  PubMed  Google Scholar 

  • Jin H, Do J, Moon D, Noh EW, Kim W, Kwon M (2011) EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation. Planta 234:959–977

    CAS  PubMed  Google Scholar 

  • Jones-Rhodes MW, Bartel DP, Barterl B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Google Scholar 

  • Jourez B, Avella-Shaw T (2003) Effet de la durée d’application d’un stimulus gravitationnel sur la formation de bois de tension et de bois opposé dans de jeunes pousses de peuplier (Populus euramericana cv ‘Ghoy’). Ann For Sci 60:31–41

    Google Scholar 

  • Juan D, Hong-Li X, De-Qiang Z, Xin-Qinag H, Min-Jie W, Ying-Zhang L, Ke-Ming C, Meng-Zhu L (2006) Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6:881–895

    CAS  Google Scholar 

  • Kaku T, Serada S, Baba K, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55:250–257

    CAS  Google Scholar 

  • Kalluri UC, Hurst GB, Lankford PK, Ranjan P, Pelletier DA (2009) Shotgun proteome profile of Populus developing xylem. Proteomics 9:4871–4880

    CAS  PubMed  Google Scholar 

  • Kern VD, Sack FD (1999) Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta 209:299–307

    CAS  PubMed  Google Scholar 

  • Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    CAS  PubMed  Google Scholar 

  • Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A 89:4967–4971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koutaniemi S, Warinowski T, Karkonen A, Alatalo E, Fossdal CG, Saranpaa P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328

    CAS  PubMed  Google Scholar 

  • Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends Plant Sci 18:227–233

    CAS  PubMed  Google Scholar 

  • Lafarguette F, Leplé J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses M-C, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    CAS  Google Scholar 

  • Lally D, Ingmire P, Tong HY, He ZH (2001) Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13:1317–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leblanc-Fournier N, Coutand C, Crouzet J, Brunel N, Lenne C, Moulia B, Julien J-L (2008) Jr-ZFP2, encoding a Cys2/His2-type transcription factor, is involved in the early stages of the mechano-perception pathway and specifically expressed in mechanically stimulated tissues in woody plants. Plant Cell Environ 31:715–726

    CAS  PubMed  Google Scholar 

  • Lindner H, Müller LM, Boisson-Dernier A, Grossniklaus U (2012) CrRLK1L receptor-like kinases: not just another brick in the wall. Curr Opin Plant Biol 15:659–669

    CAS  PubMed  Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant-growth regulators in forest tree cambial growth. Plant Growth Regul 6:137–169

    CAS  Google Scholar 

  • Love J, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci U S A 106:5984–5986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S, Sun Y-H, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S, Li L, Yi X, Joshi CP, Chiang VL (2008) Differential expression of three Eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. J Exp Bot 59:681–695

    CAS  PubMed  Google Scholar 

  • MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J 62:689–703

    CAS  PubMed  Google Scholar 

  • Marín-González E, Suárez-López P (2012) “And yet it moves”: cell-to-cell and long-distance signaling by plant microRNAs. Plant Sci 196:18–30

    PubMed  Google Scholar 

  • Martin L, Leblanc-Fournier N, Azri W, Lenne C, Henry C, Coutand C, Julien J-L (2009) Characterization and expression analysis under bending and other abiotic factors of PtaZFP2, a poplar gene encoding a Cys2/His2 zinc finger protein. Tree Physiol 29:125–136

    CAS  PubMed  Google Scholar 

  • Martin L, Leblanc-Fournier N, Julien J-L, Moulia B, Coutand C (2010) Acclimation kinetics of physiological and molecular responses of plants to multiple mechanical loadings. J Exp Bot 61:2403–2412

    CAS  PubMed  Google Scholar 

  • Mast S, Peng L, Jordan W, Flint H, Phillips L, Donaldson L, Strabala TJ, Wagner A (2010) Proteomic analysis of membrane preparations from developing Pinus radiata compression wood. Tree Physiol 30:1456–1468

    CAS  PubMed  Google Scholar 

  • Matsuzaki J, Masumori M, Tange T (2006) Stem phototropism of trees: a possible significant factor in determining stem inclination on forest slopes. Ann Bot 98:573–581

    PubMed  Google Scholar 

  • Matsuzaki J, Masumori M, Tange T (2007) Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation. Plant Cell Environ 30:646–653

    PubMed  Google Scholar 

  • Mauriat M, Moritz T (2009) Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003

    CAS  PubMed  Google Scholar 

  • McDougall GJ (2000) A comparison of proteins from the developing xylem of compression and non-compression wood of branches of Sitka spruce (Picea sitchensis) reveals a differentially expressed laccase. J Exp Bot 51:1395–1401

    CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102:659–665

    CAS  PubMed  Google Scholar 

  • Millar KD, Kiss JZ (2013) Analyses of tropistic responses using metabolomics. Am J Bot 100:79–90

    CAS  PubMed  Google Scholar 

  • Minsbrugge KV, Meyermans H, Van Montagu M, Bauw G, Boerjan W (2000) Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins. Planta 210:589–598

    Google Scholar 

  • Monshausen GB, Haswell ES (2013) A force of nature: molecular mechanisms of mechanoperception in plants. J Exp Bot. doi:10.1093/jxb/ert204 (Epub ahead of print)

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. Signaling mechanisms in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    CAS  PubMed  Google Scholar 

  • Morita MT, Kato T, Nagafusa K, Saito C, Ueda T, Nakano A, Tasaka M (2002) Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14:47–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moulia B, Fournier M (2009) The power and control of gravitropic movements in plants: a biomechanical and systems biology view. J Exp Bot 60:461–486

    CAS  PubMed  Google Scholar 

  • Moulia B, Coutand C, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am J Bot 93:1477–1489

    PubMed  Google Scholar 

  • Moulia B, Der Loughian C, Bastien R, Martin L, Rodríguez M, Gourcilleau D, Barbacci A, Badel E, Franchel J, Lenne C, Roeckel-Drevet P, Allain JM, Frachisse JM, de Langre E, Coutand C, Leblanc-Fournier N, Julien JL (2011) Integrative mechanobiology of growth and architectural development in changing mechanical environments. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants, Signaling and communication in plants. Springer-Verlag GmbH, Heidelberg, pp 269–302

    Google Scholar 

  • Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–685

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci U S A 104:3639–3644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura T (2003) Control of morphogenesis of woody plant by gravity on earth. Biol Sci Space 17:144–148

    PubMed  Google Scholar 

  • Nakamura T, Saotome M, Ishiguro Y, Itoh R, Higurashi S, Hosono M, Ishii Y (1994) The effects of GA3 on weeping of growing shoots of the Japanese cherry, Prunus spachiana. Plant Cell Physiol 35:523–527

    CAS  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194:46–53

    CAS  PubMed  Google Scholar 

  • Nilsson R, Bernfur K, Gustavsson N, Bygdell J, Wingsle G, Larsson C (2010) Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation. Mol Cell Proteomics 9:368–387

    CAS  PubMed  Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    CAS  PubMed  Google Scholar 

  • Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Marsoem SN, Ko JH, Jin HO, Funada R (2012) Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann Bot 110:887–895

    CAS  PubMed  Google Scholar 

  • Nugroho WD, Nakaba S, Yamagishi Y, Begum S, Marsoem SN, Ko JH, Jin HO, Funada R (2013) Gibberellin mediates the development of gelatinous fibres in the tension wood of inclined Acacia mangium seedlings. Ann Bot 112:1321–1329. doi:10.1093/aob/mct198 (Epub ahead of print)

    CAS  PubMed  Google Scholar 

  • Paiva JAP, Gracès M, Alves A, Garnier-Géré P, Rodrigues JC, Lalanne C, Porcon S, Le Provost G, da Silva Perez D, Brach J, Frigerio J-M, Claverol S, Barré A, Fevereiro P, Plomion C (2007) Molecular and phenotypic profiling from the base to the crown in maritime pine wood-forming tissue. New Phytol 178:283–301

    Google Scholar 

  • Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, Sivadon P, Grima-Pettenati J (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167:89–100

    CAS  PubMed  Google Scholar 

  • Perera IY, Heilmann I, Chang SC, Boss WF, Kaufman PB (2001) A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol 125:1499–1507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple’ J-C, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. C R Biol 327:889–901

    CAS  PubMed  Google Scholar 

  • Pivetti CD, Yen MR, Miller S, Busch W, Tseng YH, Booth IR, Saier MH (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67:66–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plomion C, Pionneau C, Brach J, Costa P, Baillères H (2000) Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Physiol 123:959–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plomion C, Pionneau C, Baillères H (2003) Analysis of protein expression along the normal to tension wood gradient in Eucalyptus gunnii. Holzforschung 57:353–358

    CAS  Google Scholar 

  • Pruyn ML (1997) Thigmomorphogenesis: responses of two Populus hybrids to mechanical stress. MSc. Thesis, Michigan State University, East Lansing, MI, 90 p

    Google Scholar 

  • Pruyn ML, Ewers BJ, Telewski FW (2000) Thigmomorphogenesis: changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation. Tree Physiol 20:535–540

    PubMed  Google Scholar 

  • Qin SY, Hu D, Matsumoto K, Takeda K, Matsumoto N, Yamaguchi Y, Yamamoto K (2012) Malectin forms a complex with ribophorin I for enhanced association with misfolded glycoproteins. J Biol Chem 287:38080–38089

    CAS  PubMed  Google Scholar 

  • Qiu D, Wilson IW, Gan S, Washusen R, Moran GF, Southerton SG (2008) Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytol 179:94–103

    CAS  PubMed  Google Scholar 

  • Ramos P, Le Provost G, Gantz C, Plomion C, Herrera R (2012) Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine. Plant Biol 14:923–933

    CAS  PubMed  Google Scholar 

  • Savidge RA, Mutumba GM, Heald JK, Wareing PF (1983) Gas chromatography-mass spectroscopy identification of 1-aminocyclopropane-1-carboxylic acid in compression wood vascular cambium of Pinus contorta Dougl. Plant Physiol 71:434–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serpe MD, Nothnagel EA (1995) Fractionation and structural characterization of arabinogalactan-proteins from the cell wall of rose cells. Plant Physiol 109:1007–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Li J (2012) Metabolites changes in inclined stem. BioResources 7:3463–3475

    CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 2001:re22

    CAS  PubMed  Google Scholar 

  • Shuford CM, Li Q, Sun Y-H, Chen H-C, Wang J, Shi R, Sederoff RR, Chaing VL, Muddiman DC (2012) Comprehensive quantification of monolignol-pathway enzymes in Populus trichocarpa by protein cleavage isotope dilution mass spectrometry. J Proteome Res 11:3390–3404

    CAS  Google Scholar 

  • Sierra de Grado R, Pando V, Martinez-Zurimendi P, Penalvo A, Bascones E, Moulia B (2008) Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiol 28:835–846

    PubMed  Google Scholar 

  • Sjodin A, Street NR, Sandberg G, Gustafsson P, Jansson S (2009) The Populus genome integrative explorer (PopGenIE): a new resource for exploring the Populus genome. New Phytol 182:1013–1025

    PubMed  Google Scholar 

  • Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790

    CAS  PubMed  Google Scholar 

  • Spurr S, Hyvärinen M (1954) Compression wood in conifers as a morphogenetic phenomenon. Bot Rev 20:551–560

    Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci U S A 101:13951–13956

    PubMed Central  PubMed  Google Scholar 

  • Strohm AK, Baldwin KL, Masson PH (2012) Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front Plant Sci 3:274

    PubMed Central  PubMed  Google Scholar 

  • Telewski FW (1989) Structure and function of flexure wood in Abies fraseri. Tree Physiol 5:113–122

    PubMed  Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    PubMed  Google Scholar 

  • Thibaut B, Gril J, Fournier M (2001) Mechanics of wood and trees: some new highlights for an old story. Comptes Rendus de l’Académie des Sciences Serie II Fascicule B-Mécanique 329:701–716

    Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin, 2150 p

    Google Scholar 

  • Toyota M, Gilroy S (2013) Gravitropism and mechanical signaling in plants. Am J Bot 100:111–125

    CAS  PubMed  Google Scholar 

  • Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toyota M, Ikeda N, Sawai-Toyota S, Kato T, Gilroy S (2013) Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J. doi:10.1111/tpj.12324

    PubMed  Google Scholar 

  • Ursache R, Nieminen K, Helariutta Y (2013) Genetic and hormonal regulation of cambial development. Physiol Plant 147:36–45

    CAS  PubMed  Google Scholar 

  • Vahala J, Felten J, Love J, Gorzsás A, Gerber L, Lamminmäki A, Kangasjärvi J, Sundberg B (2013) A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytol. doi:10.1111/nph.12386

    PubMed  Google Scholar 

  • Verica JA, He ZH (2002) The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol 129:455–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villalobos D, Diaz-Moreno S, Said E-S, Canas R, Osuna D, Van Kerckhoven SH, Bautista R, Claros M, Canovas F, Canton F (2012) Reprogramming of gene expression during compression wood formation in pine: coordinated modulation of S-adenosylmethionine, lignin and lignan related genes. BMC Plant Biol 12:100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinterhalter D, Vinterhalter B, Orbovic V (2012) Photo- and gravitropic bending of potato plantlets obtained in vitro from single-node explants. J Plant Growth Regul 31:560–569

    CAS  Google Scholar 

  • Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whetten R, Ying-Hsuan S, Zhang Y, Sederoff R (2001) Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 47:275–291

    CAS  PubMed  Google Scholar 

  • Wilson BF, Archer RR (1977) Reaction wood: induction and mechanical action. Annu Rev Plant Physiol 28:23–43

    Google Scholar 

  • Wilson BF, Chien CT, Zaerr JB (1989) Distribution of endogenous indole-3-acetic acid and compression wood formation in reoriented branches of Douglas-fir. Plant Physiol 91:338–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyatt SE, Kiss JZ (2013) Plant tropisms: from Darwin to the international space station. Am J Bot 100:1–3

    PubMed  Google Scholar 

  • Wyatt SE, Sederoff R, Flaishman MA, Lev-Yadun S (2010) Arabidopsis thaliana as a model for gelatinous fiber formation. Russ J Plant Physiol 57:363–367

    CAS  Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita S, Yoshida M, Yamamoto H, Okuyama T (2008) Screening genes that change expression during compression wood formation in Chamaecyparis obtusa. Tree Physiol 28:1331–1340

    CAS  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt-responsive proteins in rice root. Proteomics 5:235–244

    CAS  PubMed  Google Scholar 

  • Yeh TF, Goldfarb B, Chang HM, Peszlen I, Braun JL, Kadla JF (2005) Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine. Holzforschung 59:669–674

    CAS  Google Scholar 

  • Yeh TF, Morris CR, Goldfarb B, Chang HM, Kadla JF (2006) Utilization of polar metabolite profiling in the comparison of juvenile wood and compression wood in loblolly pine (Pinus taeda). Tree Physiol 26:1497–1503

    CAS  PubMed  Google Scholar 

  • Yoshida M, Nakamura T, Yamamoto H, Okuyama T (1999) Negative gravitropism and growth stress in GA3-treated branches of Prunus spachiana Kitamura f. Spachiana cv. Plenarosea. J Wood Sci 45:368–372

    Google Scholar 

  • Yoshinaga A, Kusumoto H, Laurans F, Pilate G, Takabe K (2012) Lignifications in poplar tension wood lignified cell wall layers. Tree Physiol 32:1129–1136

    CAS  PubMed  Google Scholar 

  • Yuan S, Wang Y, Dean JFD (2010) ACC oxidase genes expressed in the wood-forming tissues of loblolly pine (Pinus taeda L.) include a pair of nearly identical paralogs (NIPs). Gene 453:24–36

    CAS  PubMed  Google Scholar 

  • Zhang XH, Chiang VL (1997) Molecular cloning of 4-coumarate:coenzyme a ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiol 113:65–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Sederoff R, Allona I (2000) Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. Tree Physiol 20:457–466

    PubMed  Google Scholar 

  • Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Ye Z-H (2013) Transcriptional regulation of wood formation in tree species. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Heidelberg, pp 141–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tocquard, K. et al. (2014). The Molecular Mechanisms of Reaction Wood Induction. In: Gardiner, B., Barnett, J., Saranpää, P., Gril, J. (eds) The Biology of Reaction Wood. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10814-3_4

Download citation

Publish with us

Policies and ethics