Skip to main content

Counting in the Presence of Memory Faults

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

The faulty memory RAM presented by Finocchi and Italiano [1] is a variant of the RAM model where the content of any memory cell can get corrupted at any time, and corrupted cells cannot be distinguished from uncorrupted cells. An upper bound, δ, on the number of corruptions and O(1) reliable memory cells are provided. In this paper we investigate the fundamental problem of counting in faulty memory. Keeping many reliable counters in the faulty memory is easily done by replicating the value of each counter Θ(δ) times and paying Θ(δ) time every time a counter is queried or incremented. In this paper we decrease the expensive increment cost to o(δ) and present upper and lower bound tradeoffs decreasing the increment time at the cost of the accuracy of the counters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finocchi, I., Italiano, G.F.: Sorting and searching in the presence of memory faults (without redundancy). In: Proc. 36th Annual ACM Symposium on Theory of Computing, pp. 101–110 (2004)

    Google Scholar 

  2. Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE micro 23(4), 14–19 (2003)

    Article  Google Scholar 

  3. Tezzaron Semiconductor: Soft errors in electronic memory - a white paper (2004), http://www.tezzaron.com/about/papers/papers.html

  4. Baumann, R.: Soft errors in advanced computer systems. IEEE Design and Test of Computers 22(3), 258–266 (2005)

    Article  Google Scholar 

  5. Taber, A., Normand, E.: Single event upset in avionics. IEEE Transactions on Nuclear Science 40(2), 120–126 (1993)

    Article  Google Scholar 

  6. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine. In: IEEE Symposium on Security and Privacy, pp. 154–165 (2003)

    Google Scholar 

  7. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

    Article  Google Scholar 

  8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Google Scholar 

  9. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE Transactions on Computers 33, 518–528 (1984)

    Article  MATH  Google Scholar 

  11. Rela, M.Z., Madeira, H., Silva, J.G.: Experimental evaluation of the fail-silent behaviour in programs with consistency checks. In: Proc. 26th Annual International Symposium on Fault-Tolerant Computing, pp. 394–403 (1996)

    Google Scholar 

  12. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: Proc. 12th ACM conference on Computer and communications security, pp. 340–353 (2005)

    Google Scholar 

  13. Pradhan, D.K.: Fault-tolerant computer system design. Prentice-Hall, Inc., Englewood Cliffs (1996)

    Google Scholar 

  14. Novark, G., Berger, E.D., Zorn, B.G.: Exterminator: Automatically correcting memory errors with high probability. Communications of the ACM 51(12), 87–95 (2008)

    Article  Google Scholar 

  15. Aumann, Y., Bender, M.A.: Fault tolerant data structures. In: Proc. 37th Annual Symposium on Foundations of Computer Science, pp. 580–589 (1996)

    Google Scholar 

  16. Leighton, T., Ma, Y.: Tight bounds on the size of fault-tolerant merging and sorting networks with destructive faults. SIAM Journal on Computing 29(1), 258–273 (2000)

    Article  MathSciNet  Google Scholar 

  17. Chlebus, B.S., Gasieniec, L., Pelc, A.: Deterministic computations on a pram with static processor and memory faults. Fundamenta Informaticae 55(3-4), 285–306 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Ravikumar, B.: A fault-tolerant merge sorting algorithm. In: Proc. 8th Annual International Conference on Computing and Combinatorics, pp. 440–447 (2002)

    Google Scholar 

  19. Kutten, S., Peleg, D.: Tight fault locality. SIAM Journal on Computing 30(1), 247–268 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Finocchi, I., Grandoni, F., Italiano, G.F.: Designing reliable algorithms in unreliable memories. Computer Science Review 1(2), 77–87 (2007)

    Article  Google Scholar 

  21. Brodal, G.S., Fagerberg, R., Finocchi, I., Grandoni, F., Italiano, G.F., Jørgensen, A.G., Moruz, G., Mølhave, T.: Optimal resilient dynamic dictionaries. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 347–358. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient search trees. In: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 547–553 (2007)

    Google Scholar 

  23. Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal resilient sorting and searching in the presence of dynamic memory faults. Theoretical Computer Science (to appear, 2009)

    Google Scholar 

  24. Jørgensen, A.G., Moruz, G., Mølhave, T.: Priority queues resilient to memory faults. In: Proc. 10th International Workshop on Algorithms and Data Structures, pp. 127–138 (2007)

    Google Scholar 

  25. Ferraro-Petrillo, U., Finocchi, I., Italiano, G.F.: The price of resiliency: A case study on sorting with memory faults. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 768–779. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Brodal, G.S., Jørgensen, A.G., Mølhave, T.: Fault tolerant external memory algorithms. In: Proc. 11th Algorithms and Data Structures Symposium, pp. 411–422 (2009)

    Google Scholar 

  27. Boyer, R.S., Moore, J.S.: MJRTY: A fast majority vote algorithm. In: Automated Reasoning: Essays in Honor of Woody Bledsoe, pp. 105–118 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodal, G.S., Jørgensen, A.G., Moruz, G., Mølhave, T. (2009). Counting in the Presence of Memory Faults. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics