Skip to main content

Data Structures for Range Median Queries

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

In this paper we design data structures supporting range median queries, i.e. report the median element in a sub-range of an array. We consider static and dynamic data structures and batched queries. Our data structures support range selection queries, which are more general, and dominance queries (range rank). In the static case our data structure uses linear space and queries are supported in O(logn/loglogn) time. Our dynamic data structure uses O(nlogn/loglogn) space and supports queries and updates in O((logn/loglogn)2) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Petersen, H.: Improved bounds for range mode and range median queries. In: Proc. 34th Conference on Current Trends in Theory and Practice of Computer Science, pp. 418–423 (2008)

    Google Scholar 

  3. Petersen, H., Grabowski, S.: Range mode and range median queries in constant time and sub-quadratic space. Inf. Process. Lett. 109(4), 225–228 (2009)

    Article  MathSciNet  Google Scholar 

  4. Gfeller, B., Sanders, P.: Towards optimal range medians. In: Proc. 36th International Colloquium on Automata, Languages and Programming, pp. 475–486 (2009)

    Google Scholar 

  5. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of wavelet trees. In: Proc. 16th String Processing and Information Retrieval Symposium, pp. 1–6 (2009)

    Google Scholar 

  6. Har-Peled, S., Muthukrishnan, S.: Range medians. In: Proc. 16th Annual European Symposium on Algorithms, pp. 503–514 (2008)

    Google Scholar 

  7. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th ACM Symposium on Theory of Computing, pp. 40–46 (2007)

    Google Scholar 

  8. Pǎtraşcu, M.: (Data) STRUCTURES. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 434–443 (2008)

    Google Scholar 

  9. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidimensional dominance reporting and counting. In: Proc. 15th International Symposium on Algorithms and Computation, pp. 558–568 (2004)

    Google Scholar 

  10. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. In: Proc. 10th International Workshop on Algorithms and Data Structures, pp. 15–26 (2007)

    Google Scholar 

  11. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 534–543. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  12. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(2), 133–162 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jacobson, G.J.: Succinct static data structures. PhD thesis. Carnegie Mellon University, Pittsburgh, PA, USA (1988)

    Google Scholar 

  14. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Mathematical Systems Theory 10, 99–127 (1977)

    Article  MATH  Google Scholar 

  15. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. In: Proc. 4th Annual ACM symposium on Theory of computing, pp. 137–142 (1972)

    Google Scholar 

  16. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM Journal on Computing 32(6), 1488–1508 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodal, G.S., Jørgensen, A.G. (2009). Data Structures for Range Median Queries. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics