Skip to main content

Silicon Quantum Photonics

  • Chapter
  • First Online:
Silicon Photonics III

Part of the book series: Topics in Applied Physics ((TAP,volume 122))

Abstract

The recent development of chip-scale integrated quantum photonic circuits has radically changed the way in which quantum optic experiments are performed, and provides a means to deliver complex and compact quantum photonic technologies for applications in quantum communications, sensing, and computation. Silicon photonics is a promising material system for the delivery of a fully integrated and large-scale quantum photonic technology platform, where all key components could be monolithically integrated into single quantum devices. In this chapter, we provide an overview of the field silicon quantum photonics, presenting the latest developments in the generation, manipulation, and detection of quantum states of light key on-chip functions that form the basic building blocks of future quantum information processing and communication technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the case for a laser, outputting \(10\) mW, with a typical signal-to-source spontaneous emission ratio (SSE) of around 50 dB.

  2. 2.

    \(ACC\) is defined as the number of uncorrelated events leading to coincidental detections per second. It can be either directly measured or estimated using the fact that it is the product of the independent probabilities \(p_{i} \equiv C_{i} \tau\) and \(p_{s} \equiv C_{s} \tau\) for getting a single click from each channel within \(\tau\), multiplied by the number of coincidence window in one second \(\frac{1}{\tau }\), giving \(ACC\left( P \right) = C_{i} \left( P \right)C_{s} \left( P \right)\tau\).

  3. 3.

    The derivation follows the framework developed in [95] analyzed using quantum a ring in [96].

References

  1. H.-K. Lo, M. Curty, K. Tamaki, Secure quantum key distribution. Nat. Photonics 80(8), 595–604 (2014)

    Google Scholar 

  2. V. Giovannetti, S. Lloyd, L. Maccone. Advances in quantum metrology. Nat. Photonics 50(4), 222–229 (2011). doi:10.1038/nphoton.2011.35. http://www.nature.com/doifinder/10.1038/nphoton.2011.35

    Google Scholar 

  3. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464(7285), 45–53 (2010). <3, 5>

    Google Scholar 

  4. R.P. Muller, R. Blume-Kohout, The promise of quantum simulation. ACS Nano 150721172749008 (2015). doi:10.1021/acsnano.5b03650. http://pubs.acs.org/doi/abs/10.1021/acsnano.5b03650

    Google Scholar 

  5. A. Aspect, A. Aspect, P. Grangier, P. Grangier, G. Roger, Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 470(7), 460–463 (1981)

    Google Scholar 

  6. A.C. Dada, J. Leach, G.S. Buller, M.J Padgett, E. Andersson, Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 70(9), 677–680 (2011). doi:10.1038/nphys1996. http://www.nature.com/doifinder/10.1038/nphys1996

    Google Scholar 

  7. ID quantique, http://www.idquantique.com. Accessed 7 Aug 2015

  8. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)

    Google Scholar 

  9. J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photonics 30(12), 687–695 (2009)

    Google Scholar 

  10. A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. O’Brien, Quantum walks of correlated photons. Science (2010). doi:10.1126/science.1193515. http://www.sciencemag.org/content/329/5998/1500.short

    Google Scholar 

  11. P.J. Shadbolt, M.R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J.C.F. Matthews, M.G. Thompson, J.L. O’Brien, Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 60(1), 45–49 (2012)

    Google Scholar 

  12. J.B. Spring, B.J. Metcalf, P.C. Humphreys, W.S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N.K. Langford, D. Kundys, J.C. Gates, B.J. Smith, P.G.R. Smith, I.A. Walmsley, Boson sampling on a photonic chip. Science 3390(6121), 798–801 (2013). doi:10.1126/science.1231692. http://www.sciencemag.org/content/339/6121/798.full

    Google Scholar 

  13. A. Crespi, R. Osellame, R. Ramponi, D.J. Brod, E.F. Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino, Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 70(7), 545–549 (2013). doi:10.1038/nphoton.2013.112. http://www.nature.com/doifinder/10.1038/nphoton.2013.112

    Google Scholar 

  14. A. Szameit, M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, P. Walther, Experimental boson sampling. Nat. Photonics 70(7), 540–544 (2013)

    Google Scholar 

  15. J. Sun, E. Timurdogan, A. Yaacobi, E.S. Hosseini, M.R. Watts, Large-scale nanophotonic phased array. Nature 4930(7431), 195–199 (2013)

    Google Scholar 

  16. S. Han, T.J. Seok, N. Quack, B.-W. Yoo, M.C. Wu, Large-scale silicon photonic switches with movable directional couplers. Optica 20(4), 370–375 (2015)

    Google Scholar 

  17. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 670(6), 661–663 (1991)

    Google Scholar 

  18. C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 680(5), 557–559 (1992)

    Google Scholar 

  19. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 4040(6775), 247–255 (2000)

    Google Scholar 

  20. V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photonics 50(4), 222–229 (2011)

    Google Scholar 

  21. A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 80(4), 285–291 (2012)

    Google Scholar 

  22. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 4090(6816), 46–52 (2001)

    Google Scholar 

  23. R. Horodecki, P. Horodecki, M. Horodecki, Quantum entanglement. Rev. Modern Phys. 81, 865–942 (2009)

    Google Scholar 

  24. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 820(7), 071101 (2011)

    Google Scholar 

  25. A.L. Migdall, D. Branning, S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A (2002)

    Google Scholar 

  26. D. Bonneau, G.J. Mendoza, J.L. O’Brien, M.G. Thompson, Effect of Loss on Multiplexed Single-Photon Sources. Sept 2014

    Google Scholar 

  27. J. Mower, D. Englund, Efficient generation of single and entangled photons on a silicon photonic integrated chip. Phys. Rev. A 840(5) (2011)

    Google Scholar 

  28. P.P. Rohde, L.G. Helt, M.J. Steel, A. Gilchrist, Multiplexed single-photon state preparation using a fibre-loop architecture, arXiv.org. March 2015

  29. R.J.A. Francis-Jones, P.J. Mosley, Temporal Loop Multiplexing: A resource efficient scheme for multiplexed photon-pair sources, arXiv.org. March 2015

  30. X. Zhang, I. Jizan, J. He, A.S. Clark, D.Y. Choi, C.J. Chae, B.J. Eggleton, C. Xiong, Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses. Opt. Lett. 400(11), 2489–2492 (2015)

    Google Scholar 

  31. G.J. Mendoza, R. Santagati, J. Munns, E. Hemsley, M. Piekarek, E. Martn-López, G.D. Marshall, D. Bonneau, M.G. Thompson, J.L. O’Brien, Active temporal multiplexing of photons, arXiv.org. March 2015

  32. X.-S. Ma, S. Zotter, J. Kofler, T. Jennewein, A. Zeilinger, Experimental generation of single photons via active multiplexing. Phys. Rev. A 830(4), 043814 (2011)

    Google Scholar 

  33. M.J. Collins, C. Xiong, I.H. Rey, T.D. Vo, J. He, S. Shahnia, C. Reardon, T.F. Krauss, M.J. Steel, A.S. Clark, B.J. Eggleton, Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4 SP -0 (2582) (2013)

    Google Scholar 

  34. T. Meany, L.A. Ngah, M.J. Collins, A.S. Clark, R.J. Williams, B.J. Eggleton, M.J. Steel, M.J. Withford, O. Alibart, S. Tanzilli, Hybrid photonic circuit for multiplexed heralded single photons. Laser Photonics Rev. 80(3), L42–L46 (2014)

    Google Scholar 

  35. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 590(18), 2044–2046 (1987)

    Google Scholar 

  36. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, N. Gisin, Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett. 370(1), 26–28 (2001)

    Google Scholar 

  37. J.P. Sprengers, D. Sahin, A. Gaggero, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, R Sanjines, A. Fiore, Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 990(18), 181110–181110 (2011)

    Google Scholar 

  38. J.E. Sharping, K.F. Lee, M.A. Foster, A.C. Turner, B.S. Schmidt, M. Lipson, A.L. Gaeta, P. Kumar, Generation of correlated photons in nanoscale silicon waveguides. Opt. Express 140(25), 12388–12393 (2006)

    Google Scholar 

  39. D. Bonneau, M.G. Thompson, E. Engin, K. Ohira, H. Yoshida, N. Iizuka, M. Ezaki, C.M. Natarajan, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, J.L. O’Brien, Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 140(4), 045003 (2012)

    Google Scholar 

  40. W.H.P. Pernice, C. Schuck, O. Minaeva, M. Li, G.N. Gol’tsman, A.V. Sergienko, High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    Google Scholar 

  41. H. Jin, F.M. Liu, P. Xu, J.L. Xia, M.L. Zhong, Y. Yuan, J.W. Zhou, Y.X. Gong, W. Wang, S.N. Zhu, On-Chip Generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 1130(10), 103601 (2014)

    Google Scholar 

  42. A. Martin, O. Alibart, M.P. De Micheli, D.B. Ostrowsky, S. Tanzilli, A quantum relay chip based on telecommunication integrated optics technology. New J. Phys. 140(2), 025002 (2012)

    Google Scholar 

  43. M.G. Tanner, L.S.E. Alvarez, W. Jiang, R.J. Warburton, Z.H. Barber, R.H. Hadfield, A superconducting nanowire single photon detector on lithium niobate. Nanotechnology 230(50), 505201 (2012)

    Google Scholar 

  44. S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, A.L. Gaeta, Monolithic Source of Tunable Narrowband Photons for Future Quantum Networks. CLEO: 2015 (2015), paper FM2A.7, p. FM2A.7, May 2015

    Google Scholar 

  45. C. Xiong, X. Zhang, A. Mahendra, J. He, D.Y. Choi, C.J. Chae, D. Marpaung, A. Leinse, R.G. Heideman, M. Hoekman, C.G.H. Roeloffzen, R.M. Oldenbeuving, P.W.L. van Dijk, C. Taddei, P.H.W. Leong, B.J. Eggleton, A compact and reconfigurable silicon nitride time-bin entanglement circuit, arXiv.org. June 2015

  46. O. Kahl, S. Ferrari, V. Kovalyuk, G.N. Goltsman, A. Korneev, W.H.P. Pernice, Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths. Sci. Rep. 5, 10941 (2015)

    Google Scholar 

  47. J.B. Spring, P. Salter, P. Mennea, B. Metcalf, P.C. Humphreys, M. Moore, J.C. Gates, N. Thomsa-Peter, M. Barbieri, X.-M. Jin, N.K. Langford, S.W. Kolthammer, P.G. Smith, M. Booth, B.J. Smith, I.A. Walmsley, Quantum interference of multiple on-chip heralded sources of pure single photons. Research in Optical Sciences (2014), paper QW1B.6, p. QW1B.6, March 2014

    Google Scholar 

  48. T. Gerrits, N. Thomas-Peter, J.C. Gates, A.E. Lita, B.J. Metcalf, B. Calkins, N.A. Tomlin, A.E. Fox, A.L. Linares, J.B. Spring, N.K. Langford, R.P. Mirin, P.G.R. Smith, I.A. Walmsley, S.W. Nam, On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 840(6), 060301 (2011)

    Google Scholar 

  49. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J.W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M.G. Tanner, C.M. Natarajan, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, J.L. O’Brien, M.G. Thompson, Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 327, 49–55 (2014)

    Google Scholar 

  50. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, J.J. Finley, On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3 (2013)

    Google Scholar 

  51. J.M. Shainline, J.S. Orcutt, M.T. Wade, K. Nammari, B. Moss, M. Georgas, C. Sun, R.J. Ram, V. Stojanovic’, M.A. Popovic’, Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS. Opt. Lett. 380(15), 2657–2659 (2013)

    Google Scholar 

  52. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Modern Phys. 79, 135–174 (2007)

    Google Scholar 

  53. T.C. Ralph, T.B. Bell, A.G. White, Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 650(6) (2002)

    Google Scholar 

  54. X. Xu, T. Zhong, Z. Xie, J. Zheng, J. Liang, M. Yu, S. Kocaman, G.-Q. Lo, D.-L. Kwong, D.R. Englund, F.N.C. Wong, C.W. Wong, Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip. Opt. Express 210(4), 5014–5024 (2013)

    Google Scholar 

  55. A.L. Migdall, D. Branning, S. Castelletto, Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805+ (2002). doi:10.1103/PhysRevA.66.053805. http://dx.doi.org/10.1103/PhysRevA.66.053805

  56. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Indistinguishable photon pair generation using two independent silicon wire waveguides. New J. Phys. 130(6), 065005 (2011)

    Google Scholar 

  57. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of high-purity entangled photon pairs using silicon wire waveguide. Opt. Express 160(25), 20368–20373 (2008)

    Google Scholar 

  58. S. Clemmen, K.P. Huy, W. Bogaerts, R.G. Baets, P. Emplit, S. Massar, Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 170(19), 16558–16570 (2009)

    Google Scholar 

  59. L. Olislager, J. Safioui, S. Clemmen, K.P. Huy, W. Bogaerts, R. Baets, P. Emplit, S. Massar, Silicon-on-insulator integrated source of polarization-entangled photons. Opt. Lett. 380(11), 1960–1962 (2013)

    Google Scholar 

  60. J.W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C.M. Natarajan, M.G. Tanner, R.H. Hadfield, V. Zwiller, V. Zwiller, G.D. Marshall, J.G. Rarity, J.L. O’Brien, M.G. Thompson, On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 80(2), 104–108 (2014)

    Google Scholar 

  61. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W.J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817 (2012)

    Google Scholar 

  62. N. Matsuda, P. Karkus, H. Nishi, T. Tsuchizawa, W.J. Munro, H. Takesue, K. Yamada, On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform. Opt. Express 220(19), 22831–22840 (2014)

    Google Scholar 

  63. S. Azzini, D. Grassani, M.J. Strain, M. Sorel, L.G. Helt, J.E. Sipe, M. Liscidini, M. Galli, D. Bajoni, Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 200(21), 23100–23107 (2012)

    Google Scholar 

  64. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M.J. Strain, M. Sorel, J.E. Sipe, D. Bajoni, Micrometer-scale integrated silicon source of time-energy entangled photons. Optica 20(2), 88 (2015)

    Google Scholar 

  65. R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, T. Aoki, Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 230(2), 1103 (2015)

    Google Scholar 

  66. S.F. Preble, M.L. Fanto, J.A. Steidle, C.C. Tison, G.A. Howland, Z. Wang, P.M. Alsing, On-chip quantum interference from a single silicon ring resonator source, arXiv.org. April 2015

  67. N.C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland, Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 40(4), 041047 (2014)

    Google Scholar 

  68. E. Engin, D. Bonneau, C.M. Natarajan, A.S. Clark, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, V. Zwiller, K. Ohira, H. Yoshida, N. Iizuka, M. Ezaki, J.L. O’Brien, M.G. Thompson, Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 210(23), 27826–27834 (2013)

    Google Scholar 

  69. J.W. Silverstone, R. Santagati, D. Bonneau, M.J. Strain, M. Sorel, J.L. O’Brien, M.G. Thompson, Qubit entanglement on a silicon photonic chip, arXiv.org. Oct 2014

  70. C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B.E. Little, S.T. Chu, D.J. Moss, R. Morandotti, Integrated frequency comb source of heralded single photons. Opt. Express 220(6), 6535–6546 (2014)

    Google Scholar 

  71. R. Kumar, J.R. Ong, M. Savanier, S. Mookherjea, Controlling the spectrum of photons generated on a silicon nanophotonic chip. Nat. Commun. 5, 5489 (2014)

    Google Scholar 

  72. M. Davanco, J.R. Ong, A.B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W.M.J. Green, S. Mookherjea, K. Srinivasan, Telecommunications-band heralded single photons from a silicon nanophotonic chip. Appl. Phys. Lett. 1000(26) (2012)

    Google Scholar 

  73. W.C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, A silicon-chip source of bright photon-pair comb, arXiv.org. Oct 2012

  74. W.C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, Photon-pair comb generation in a silicon microdisk resonator. CLEO: 2013 (2013), paper CF2 M.3, p. CF2 M.3, June 2013

    Google Scholar 

  75. S. Rogers, X. Lu, W.C. Jiang, Q. Lin, Twin photon pairs in a high-q silicon microresonator. Appl. Phys. Lett. 1070(4), 041102 (2015). doi:http://dx.doi.org/10.1063/1.4927540. http://scitation.aip.org/content/aip/journal/apl/107/4/10.1063/1.4927540

    Google Scholar 

  76. S. Azzini, D. Grassani, M. Galli, D. Gerace, M. Patrini, M. Liscidini, P. Velha, D. Bajoni, Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities. Appl. Phys. Lett. 3, 2013 (1030)

    Google Scholar 

  77. C. Xiong, C. Monat, A.S. Clark, C. Grillet, G.D. Marshall, M.J. Steel, J. Li, L. O’Faolain, T. F Krauss, B.J. Eggleton, Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt. Lett. 360(17), 3413–3415 (2011)

    Google Scholar 

  78. N. Matsuda, N. Matsuda, H. Takesue, K. Shimizu, K. Shimizu, Y. Tokura, Y. Tokura, E. Kuramochi, M. Notomi, Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides. Opt. Express 210(7), 8596–8604 (2013)

    Google Scholar 

  79. H. Takesue, N. Matsuda, E. Kuramochi, M. Notomi, Entangled photons from on-chip slow light. Sci. Rep. 4, 3913 (2014)

    Google Scholar 

  80. M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt, M. Lipson, A.L. Gaeta, Broad-band optical parametric gain on a silicon photonic chip. Nature 4410(7096), 960–963 (2006). ISSN 0028-0836. doi:10.1038/nature04932. http://dx.doi.org/10.1038/nature04932

    Google Scholar 

  81. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, Four-wave mixing in silicon wire waveguides. Opt. Express 130(12), 4629–4637 (2005). doi:10.1364/OPEX.13.004629. http://dx.doi.org/10.1364/OPEX.13.004629

    Google Scholar 

  82. M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 820(18), 2954–2956 (2003). ISSN 00036951. doi:10.1063/1.1571665. http://dx.doi.org/10.1063/1.1571665

    Google Scholar 

  83. H.K. Tsang, C.S. Wong, T.K. Liang, I.E. Day, S.W. Roberts, A. Harpin, J. Drake, M. Asghari, Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Appl. Phys. Lett. 800(3), 416–418 (2002). doi:10.1063/1.1435801. http://dx.doi.org/10.1063/1.1435801

    Google Scholar 

  84. M. Liscidini, L.G. Helt, J.E. Sipe, Asymptotic fields for a Hamiltonian treatment of nonlinear electromagnetic phenomena. Phys. Rev. A 85, 013833+ (2012). doi:10.1103/PhysRevA.85.013833. http://dx.doi.org/10.1103/PhysRevA.85.013833

  85. J. Hansryd, P.A. Andrekson, M. Westlund, J. Li, P.O. Hedekvist, Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Top. Quantum Electron. 80(3), 506–520 (2002). ISSN 1077-260X. doi:10.1109/JSTQE.2002.1016354. http://dx.doi.org/10.1109/JSTQE.2002.1016354

    Google Scholar 

  86. C.A. Husko, A.S. Clark, M.J. Collins, A. De Rossi, S. Combrie, G. Lehoucq, I.H. Rey, T.F. Krauss, C. Xiong, B.J. Eggleton, Multi-photon absorption limits to heralded single photon sources. Sci. Rep. 3 (2013)

    Google Scholar 

  87. I.D. Rukhlenko, M. Premaratne, G.P. Agrawal, Analytical study of optical bistability in silicon ring resonators. Opt. Lett. 350(1), 55–57 (2010). doi:10.1364/ol.35.000055. http://dx.doi.org/10.1364/ol.35.000055

    Google Scholar 

  88. Ö. Boyraz, P. Koonath, V. Raghunathan, B. Jalali, All optical switching and continuum generation in silicon waveguides. Opt. Express 120(17), 4094–4102 (2004)

    Google Scholar 

  89. W.H.P. Pernice, M. Li, H.X. Tang, Time-domain measurement of optical transport in silicon micro-ring resonators. Opt. Express 180(17), 18438–18452 (2010)

    Google Scholar 

  90. W. Mauerer, M. Avenhaus, W. Helwig, C. Silberhorn, How colors influence numbers: photon statistics of parametric down-conversion. Phys. Rev. A 800(5) (2009). ISSN 1050-2947. doi:10.1103/physreva.80.053815. http://dx.doi.org/10.1103/physreva.80.053815

  91. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004). ISBN 052152735X. http://www.worldcat.org/isbn/052152735X

  92. T.B. Jones, M. Hochberg, C. Walker, A. Scherer, High-Q ring resonators in thin silicon-on-insulator. Appl. Phys. Lett. 850(16), 3346–3347 (2004). doi:10.1063/1.1781355. http://dx.doi.org/10.1063/1.1781355

    Google Scholar 

  93. S. Xiao, M.H. Khan, H. Shen, M. Qi, Compact silicon microring resonators with ultra-low propagation loss in the C band. Opt. Express 150(22), 14467–14475 (2007). doi:10.1364/OE.15.014467. http://dx.doi.org/10.1364/OE.15.014467

    Google Scholar 

  94. L.G. Helt, J.E. Sipe, Z. Yang, M. Liscidini,Spontaneous four-wave mixing in microring resonators. Opt. Lett. 350(18), 3006–3008 (2010)

    Google Scholar 

  95. M. Liscidini, L.G. Helt, J.E. Sipe, Asymptotic fields for a Hamiltonian treatment of nonlinear electromagnetic phenomena. Phys. Rev. A 850(1), 013833 (2012)

    Google Scholar 

  96. L.G. Helt, Z. Yang, M. Liscidini, J.E. Sipe, Spontaneous four-wave mixing in microring resonators. Opt. Lett. 350(18), 3006–3008 (2010). doi:10.1364/OL.35.003006. http://dx.doi.org/10.1364/OL.35.003006

    Google Scholar 

  97. P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. U’Ren, C. Silberhorn, I.A. Walmsley, Heralded Generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 1000(13), 133601+ (2008). doi:10.1103/PhysRevLett.100.133601. http://dx.doi.org/10.1103/PhysRevLett.100.133601

  98. M.G. Raymer, J. Noh, K. Banaszek, I.A. Walmsley, Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity. Phys. Rev. A 72, 023825+ (2005). doi:10.1103/physreva.72.023825. http://dx.doi.org/10.1103/physreva.72.023825

  99. M.U. Karelin, The schmidt number of pure continuous-variable bipartite entangled states and the method of its calculation. Opt. Spectrosc. 1030(2), 193–195 (2007). doi:10.1134/s0030400x07080048. http://dx.doi.org/10.1134/s0030400x07080048

    Google Scholar 

  100. A. Ekert, P.L. Knight, Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 630(5), 415–423 (1995). ISSN 00029505. doi:10.1119/1.17904. http://dx.doi.org/10.1119/1.17904

    Google Scholar 

  101. G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 790(6), 705–707 (2001)

    Google Scholar 

  102. R.M. Heath, M.G. Tanner, T.D. Drysdale, S. Miki, V. Giannini, S.A. Maier, R.H. Hadfield, Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors. Nano Lett. 150(2), 819–822 (2015)

    Google Scholar 

  103. P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, W. Pernice, Superconducting single photon detectors integrated with diamond nanophotonic circuits, arXiv.org. May 2015

  104. F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, S.W. Nam, Detecting single infrared photons with 93 % system efficiency. Nat. Photonics 70(3), 210–214 (2013)

    Google Scholar 

  105. V.B. Verma, B. Korzh, F. Bussières, R.D. Horansky, A.E. Lita, F. Marsili, M.D. Shaw, H. Zbinden, R.P. Mirin, S.W. Nam. High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K. Appl. Phys. Lett. 1050(12), 122601 (2014)

    Google Scholar 

  106. A. Beyer, R. Briggs, F. Marsili, J.D. Cohen, S.M. Meenehan, O.J. Painter, M. Shaw, Waveguide-coupled superconducting nanowire single-photon detectors. CLEO: 2015, p. STh1I.2 (2015)

    Google Scholar 

  107. V.B. Verma, B. Korzh, F. Bussières, R.D. Horansky, S.D. Dyer, A.E. Lita, I. Vayshenker, F. Marsili, M.D. Shaw, H. Zbinden, R.P. Mirin, S.W. Nam, High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films, arXiv.org. April 2015

  108. P. Yu Korneeva, M. Yu Mikhailov, P.Yu Pershin, N.N. Manova, A.V. Divochiy, B. Yu Vakhtomin, A.A. Korneev, K.V. Smirnov, A.G. Sivakov, A. Yu Devizenko, G.N. Gol’tsman. Superconducting single-photon detector made of MoSi film. Supercond. Sci. Technol. 270(9), 095012 (2014)

    Google Scholar 

  109. V.B. Verma, A.E. Lita, M.R. Vissers, F. Marsili, D.P. Pappas, R.P. Mirin, S.W. Nam, Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film. Appl. Phys. Lett. 1050(2), 022602 (2014)

    Google Scholar 

  110. F. Najafi, J. Mower, N.C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K.K. Berggren, D. Englund, On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015)

    Google Scholar 

  111. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W.J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue, A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2 (2012). ISSN 2045-2322. doi:10.1038/srep00817. http://dx.doi.org/10.1038/srep00817

  112. J.W. Silverstone, R. Santagati, D. Bonneau, M.J. Strain, M. Sorel, J.L. O’Brien, M.G. Thompson, Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 1–7 (2015). doi:10.1038/ncomms8948

  113. J. Silverstone, R. Santagati, D. Bonneau, M. Sasaki, M. Sorel, M.J. Strain, S. Miki, T. Yamashita, M. Fujiwara, H. Terai, M.G. Tanner, C. Natarajan, R.H. Hadfield, J.L. O’Brien, M.G. Thompson, Photonic qubit entanglement and processing in silicon waveguides, in Integrated Photonics Research, Silicon and Nano-Photonics, p. IS4A.5. Boston (2015)

    Google Scholar 

  114. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A (2001)

    Google Scholar 

  115. J.S. Pelc, K. Rivoire, S. Vo, C. Santori, D.A. Fattal, R.G. Beausoleil, Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators. Opt. Express (2014)

    Google Scholar 

  116. T.W. Baehr-Jones, M.J. Hochberg, Polymer silicon hybrid systems: a platform for practical nonlinear optics. J. Phys. Chem. C 1120(21), 8085–8090 (2008)

    Google Scholar 

  117. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, H. Kurz, Pockels effect based fully integrated, strained silicon electro-optic modulator. Opt. Express 190(18), 17212–17219 (2011)

    Google Scholar 

  118. C. Xiong, W.H.P. Pernice, J.H Ngai, J.W. Reiner, D. Kumah, F.J. Walker, C.H. Ahn, Active silicon integrated Nanophotonics: ferroelectric BaTiO3 devices. Nano Lett. 140205130629005 (2014)

    Google Scholar 

  119. K. Van Acoleyen, J. Roels, P. Mechet, T. Claes, D. van Thourhout, R. Baets, Ultracompact phase modulator based on a cascade of NEMS-operated slot waveguides fabricated in silicon-on-insulator. Photonics J. IEEE 40(3), 779–788 (2012)

    Google Scholar 

  120. T. Yamashita, S. Miki, H. Terai, K. Makise, Z. Wang, Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford–McMahon cryocooler. Opt. Lett. 370(14), 2982–2984 (2012)

    Google Scholar 

  121. X. Sun, X. Zhang, C. Schuck, H.X. Tang, Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium. Sci. Rep. 3 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark G. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonneau, D., Silverstone, J.W., Thompson, M.G. (2016). Silicon Quantum Photonics. In: Pavesi, L., Lockwood, D. (eds) Silicon Photonics III. Topics in Applied Physics, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10503-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10503-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10502-9

  • Online ISBN: 978-3-642-10503-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics