Skip to main content

Adaptive Pixel Resizing for Multiscale Recognition and Reconstruction

  • Conference paper
Combinatorial Image Analysis (IWCIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5852))

Included in the following conference series:

Abstract

This paper present an adaptive pixel resizing method based on a parameter space approach. The pixel resizing is designed for both multiscale recognition and reconstruction purposes. The general idea is valid in any dimension. In this paper we present an illustration of our method in 2D. Pixels are resized according to the local curvature of the curve to control the local error margin of the reconstructed Euclidean object. An efficient 2D algorithm is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical Models 65, 92–111 (2003)

    Article  MATH  Google Scholar 

  2. Andres, E.: The supercover of an m-flat is a discrete analytical object. Theoretical Computer Science 406, 8–14 (2008); Discrete Tomography and Digital Geometry: In memory of Attila Kuba

    Article  MATH  MathSciNet  Google Scholar 

  3. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59, 302–309 (1997)

    Article  Google Scholar 

  4. Breton, R., Sivignon, I., Dexet, M., Andres, E.: Towards an invertible euclidean reconstruction of a discrete object. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 246–256. Springer, Heidelberg (2003)

    Google Scholar 

  5. Bullard, J.W., Garboczi, E.J., Carter, W.C., Fuller Jr., E.R.: Numerical methods for computing interfacial mean curvature. Computational Materials Science 4, 103–116 (1995)

    Article  Google Scholar 

  6. Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.M.: On digital plane preimage structure. Discrete Applied Mathematics, 78–92 (2005)

    Google Scholar 

  7. De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  8. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Computer & Graphics 30 (2006)

    Google Scholar 

  9. Debled Rennesson, I., Tabbone, S., Wendling, L.: Multiorder polygonal approximation of digital curves. Electonic Letters on Computer Vision and Image Analysis 5, 98–110 (2005)

    Google Scholar 

  10. Dexet, M., Andres, E.: A generalized preimage for the digital analytical hyperplane recognition. Discrete Applied Mathematics 157, 476–489 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Edelsbrunner, H.: Finding transversals for sets of simple geometric figures. Theoretical Computer Science 35, 55–69 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hough, P.V.C.: Method and means for recognizing complex patterns. In: United States Pattent 3069654, pp. 47–64 (1962)

    Google Scholar 

  13. Lachaud, J.O., Vialard, A., De Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005)

    Google Scholar 

  14. Largeteau-Skapin, G., Andres, E.: Discrete-euclidean operations. Discrete Applied Mathematics 157, 510–523 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Reveillés, J.P.: Géometrie Discrete, calcul en nombre entiers et algorithmique. PhD thesis, Université Louis Pasteur (1991)

    Google Scholar 

  16. Rodríguez, M., Largeteau-Skapin, G., Andres, E.: Adaptive pixel size reconstruction with topological control. In: Wiederhold, P., Barneva, R.P. (eds.) Progress in Combinatorial Image Analysis. Research Publishing Services, Singapore (to appear 2009)

    Google Scholar 

  17. Sivignon, I., Dupont, F., Chassery, J.: Reversible vectorisation of 3d digital planar curves and applications. Image Vision and Computing 25, 1644–1656 (2007)

    Article  Google Scholar 

  18. Vialard, A.: Geometrical parameters extraction from discrete paths. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 24–35. Springer, Heidelberg (1996)

    Google Scholar 

  19. Vittone, J., Chassery, J.M.: (n,m)-cubes and farey nets for naive planes understanding. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 76–90. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Vittone, J., Chassery, J.M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodríguez, M., Largeteau-Skapin, G., Andres, E. (2009). Adaptive Pixel Resizing for Multiscale Recognition and Reconstruction. In: Wiederhold, P., Barneva, R.P. (eds) Combinatorial Image Analysis. IWCIA 2009. Lecture Notes in Computer Science, vol 5852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10210-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10210-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10208-0

  • Online ISBN: 978-3-642-10210-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics