Skip to main content

The Use of Irreversible Electroporation in Food Preservation

  • Chapter
Irreversible Electroporation

Abstract

The need for food preservation has faced mankind since ancient times. Food preservation technologies have evolved as a result of the progression of human knowledge. The more knowledge we have about the environment we live in, the more sophisticated tools we develop to control it. Any significant breakthrough in physics and engineering has resulted in the improvement of food preservation methods. For example,the invention of electricity in 1600 undoubtedly led to major breakthroughs in fresh food storage. Primarily,various thermal methods were invented; thermal sterilization, refrigeration, and cooled storage are among them. However, as years passed, the additional method of pulsed electric field ( PEF) treatment was developed based on the observation of the effect of certain electric fields on cell membranes when delivered as high amplitude short length pulses. Stimulated by customer demand for high quality products displaying the same properties as untreated food, this method is currently in the latest stages of research progress before being implemented industrially. The exact molecular mechanism by which PEF inactivates cells is not yet known. One proposition is that PEF causes the formation of nanoscale pores in the cell membrane, a phenomenon termed electroporation. In the particular case when the process causes cell death, it is called irreversible electroporation (IRE). In the last four decades, IRE food disinfection has been successfully performed on numerous products and bacteria types. Particular contamination problems concerned with specific products have been evaluated, resulting in the investigation of various process parameters and protocol development. This will allow the implementation of IRE technology in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diamond, J.: Guns, Germs, and Steel: The Fates of Human Societies (1997)

    Google Scholar 

  2. Flandrin, J.-L., Montanari, M., Sonnenfeld, A.: Food: A Culinary History. Penguin, New York (2000)

    Google Scholar 

  3. Ponting, C.: A Green History of the World: The Environment and the Collapse of Great Civilizations. St. Martin’s, New York (1992)

    Google Scholar 

  4. Ray, B.: Fundamental Food Microbiology. CRC Press, Boca Raton (2004)

    Google Scholar 

  5. FAO/WHO, The role of food safety in health and development. Report of Joint FAO/WHO expert omittee on Food Safety. World Health Organisation. Techn. Report Ser. (1984)

    Google Scholar 

  6. WHO, Food safety and foodborne illness, N°237 (2007)

    Google Scholar 

  7. WHO, Practical actions to promote food safety. Final report: FAO/WHO regional conference on food safety Africa (2005)

    Google Scholar 

  8. Rahman, M.S.: Handbook of Food Preservation. CRC Press, Boca Raton (2007)

    Google Scholar 

  9. Lelieveld, H.L.M., Notermans, S., de Haan, S.W.H.: Food Preservation by pulsed electric fields. From Research to Application. CRC, Cambridge (2007)

    Google Scholar 

  10. Stewarta, C.M., Tompkin, R.B., Cole, M.C.: Food safety: new concepts for the new millennium. Innovative Food Science & Emerging Technologies 3, 105–112 (2002)

    Google Scholar 

  11. Shin, S.Y., Kliebenshtein, J., Hayes, D., Shogren, J.F.: Customers willingness to pay for safer food products. Journal of Food Safety 13, 51–59 (1992)

    Google Scholar 

  12. Baltzer, K.: Customers willingness to pay for food quality - the case of eggs. Acta Agriculturae Scandinavica, Section C-Economy 1, 78–90 (2004)

    Google Scholar 

  13. Sivapalasingam, S., Friedman, C.R., Cohen, L., Tauxe, R.V.: Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Trot 67, 2342–2353 (2004)

    Google Scholar 

  14. Mertens, B., Knorr, D.: Development of nonthermal processes for food preservation. Food Technol. 5, 124–133 (1992)

    Google Scholar 

  15. Sizer, C.E., Balasubramaniam, V.M.: New invention processes for minimally processed juices. Food Technol. 53, 64–67 (1999)

    Google Scholar 

  16. Rubinsky, B.: Irreversible electroporation in medicine. Technology in Cancer Research and Treatment 6, 255–260 (2007)

    Google Scholar 

  17. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H.: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845 (1982)

    Google Scholar 

  18. Fuller, G.W.: Report on the investigations into the purification of the Ohio river water at Louisville Kentucky. D. Van Nostrand Company, New York (1898)

    Google Scholar 

  19. Beattie, J.M., Lewis, F.C.: The electric current (Appart from the Heat Generated) A Bacteriological Agent in the Sterilisation of milk and other fluids. Journal of Hygiene 24, 123–137 (1925)

    Google Scholar 

  20. Moses, B.D.: Electrical Pasterization of milk. Agricultural Engineering 19, 525–526 (1938)

    Google Scholar 

  21. Sale, A.J., Hamilton, W.A.: Effect of high electric field on micro-organisms. I.Killing of bacteria and yiest. Biochimica Biophysica Acta 148, 781–788 (1967a)

    Google Scholar 

  22. Sale, A.J., Hamilton, W.A.: Effect of high electric field on micro-organisms. II.Mechanism of action of the lethal effect. Biochimica Biophysica Acta 148, 788–800 (1967b)

    Google Scholar 

  23. Sale, A.J., Hamilton, W.A.: Effects of high electric fields on microorganisms. III. Lysis of erythrocytes and protoplasts. Biochimica Biophysica Acta 163, 37–43 (1968)

    Google Scholar 

  24. Doevenspeck, H.: Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13, 968–987 (1961)

    Google Scholar 

  25. Zimmerman, U., Riemann, F., Pilwat, G.: Dielectric breakdown of cell membranes. Biophys. J. 14, 881–899 (1974)

    Google Scholar 

  26. Kinosita, K., Tsong, T.Y.: Voltage-induced pore formation and hemolyses of human erythrocytes. Biochim. Biophys. Acta 471, 227–242 (1977b)

    Google Scholar 

  27. Abidor, I.G., Arakelyan, L.V., Chernomordik, L.V., Chimadzev, Y.A., Pastushenko, V.P., Tarasevich, M.R.: Electrochemic breakdown of bilayer lipid membranes. The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenergetics 6, 37–52 (1979)

    Google Scholar 

  28. Weather, J.C., Chimadzev, Y.A.: Theory of electroporation: A review. Bioelectrochemical Bioengener. 41, 135–160 (1996)

    Google Scholar 

  29. Somolinos, M., Mañas, P., Condón, S., Pagán, R., García, D.: Recovery of Saccharomyces cerevisiae sublethally injured cells after Pulsed Electric Fields. International Journal of Food Microbiology 125, 352–356 (2008)

    Google Scholar 

  30. Saulis, G., Venslauskas, S., Naktinis, J.: Kinetics of pore resealing in cell membrane after electroporation. Bioelectrochemistry Bioenerg. 26, 1–13 (1991)

    Google Scholar 

  31. Saulis, G.: Pore disappearence in a cell after electroporation.Theoretical simulation and comparison with experiments. Biophys. J. 73, 1299–1309 (1997)

    Google Scholar 

  32. Somolinos, M., García, D., Mañas, P., Condón, S., Pagán, R.: Effect of environmental factors and cell physiological state on Pulsed Electric Fields resistance and repair capacity of various strains of Escherichia coli. International Journal of Food Microbiology 124, 260–267 (2008)

    Google Scholar 

  33. FDA, Kinetics of Microbial Inactivation for Alternative Food Processing Technologies, US, Food and Drug Administration Center for Food Safety and Applied Nutrition IFT/FDA Contract No. 223-98-2333 (2000)

    Google Scholar 

  34. Hülsheger, H., Potel, J., Niemann, E.G.: Killing of bacteria with electric pulses of high field strength. Radiat. Environment Biophys. 20, 53–65 (1981)

    Google Scholar 

  35. Hülsheger, H., Pottel, J., Niemann, E.G.: Electric field effects on bacteria and yeast cells. Radiat. Environ. Biophys. 22, 149–162 (1983)

    Google Scholar 

  36. Peleg, M.: A model of microbial survaval after exposure to pulse electric field. J. Sci. Food Agric. 67, 93–99 (1995)

    Google Scholar 

  37. Pina-Perez, M.C., Aliaga, D.R., Bernat, C.F., Enguidanos, M.R., Lopez, A.M.: Inactivation of Enterobacter sakazakii by pulsed electric field in buffered peptone water and infant formula milk. International Dairy Journal 17, 1441–1449 (2007)

    Google Scholar 

  38. Barbosa-Canovas, G.V., Pothakamury, U.R., Palou, E., Swanson, B.G.: Nonthermal Preservation of Foods. Marcel Decker, New York (1998)

    Google Scholar 

  39. Barbosa-Cánovas, G.V., Gongora-Nieto, M.M., Pothakamury, U.R., Swanson, B.G.: Preservation of foods with pulsed electric fields. Academic Press Ltd., London (1999)

    Google Scholar 

  40. Bushnell, A.H., Clark, R.W., Dunn, J.E., Lloyd, S.W.: Process for reducing levels of microorganisms in pumpable food products using a high pulsed voltage system 5, 514, 391, US Patent 5, 514, 391 (1996)

    Google Scholar 

  41. Pizzichemi, M.: Application of pulsed electric fields to food treatments. In: 10th Topical seminar on Innovative particle and Radiation Detectors, vol. 172, pp. 314–316 (2007)

    Google Scholar 

  42. Zhang, Q., Barbosa-Cánovas, G.V., Swanson, B.G.: Engineering Aspects of Pulsed Electric Field Pasteurization. Journal of Food Engineering 25, 261–281 (1995)

    Google Scholar 

  43. Satoshi, U., Makoto, H., Furmiyoshi, T.: Efficient sterelisation of bacteria by pulse electric field in micro-gap. J. of Electrostatics 66, 427–431 (2008)

    Google Scholar 

  44. Narsetti, R., Curry, R.D., McDonald, K.F., Clevenger, T.E., Nichols, L.M.: Microbial Inactivation in Water Using Pulsed Electric Fields and Magnetic Pulse Compressor Technology. IEEE Transactions on Plasma Science 34, 1386–1393 (2006)

    Google Scholar 

  45. Mohan, N., Underland, T.M., Robbins, W.P.: Power electronics converters, Application and design, 2nd edn. John Wiley & Sons, New York (1995)

    Google Scholar 

  46. Roodenburg, B.: Electrochemistry in pulsed electric field treatment chambers. In: Lelieveld, H.L.M., Netermans, S., de Haan, S.W.H. (eds.) Food preservation by pulsed electric fields. From research to application. Woodhead publishing limited, Cambridge (2007)

    Google Scholar 

  47. Caplot, M., Cote, G.: Les technologies nécessaires aux machines de traitment par Champs Electriques Pulsés. In: Formation Technologique en Agro- Alimentaire, La conservation de demain, Bordeaux Pessac, France (1999)

    Google Scholar 

  48. Morren, J., Roodenburg, B., de Haan, S.W.H.: Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innov. Food Sci. Emerg. Technol. 4, 285–295 (2003)

    Google Scholar 

  49. Gongora-Nieto, M.M.: Food preservation by pulsed electric fields: evaluation of critical processing parameters and process optimization. Ph.D. Dissertation, Washington State University, Pullman, WA (2000)

    Google Scholar 

  50. Qin, B.L.: Continuous flowelectrical treatment of flowable food products. US Patent 566, 203 (1997)

    Google Scholar 

  51. Toepfl, S., Heinz, V., Knorr, D.: High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing 46, 537–546 (2007)

    Google Scholar 

  52. Davalos, R.D., Mir, L.M., Rubinsky, B.: Tissue ablation with Irreversible Electroporation. Annals of Biomedical Engineering 33, 223–231 (2005)

    Google Scholar 

  53. Zimmerman, U.: The effect of high intensity electric field pulses on eucaryotic cell membranes: fundamentals and application. CRC Press, Boca Raton (1996)

    Google Scholar 

  54. Heinz, V., Alvarez, I., Angersbach, A., Knorr, D.: Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends in Food Science and Technology 12, 103–111 (2002)

    Google Scholar 

  55. Neumann, E.: Gene delivery by membrane elecroporation. In: Lynch, P.T., Davet, M.R. (eds.) Electrical manipuation of cells, pp. 157–184. Chapman and Hall, New York (1996)

    Google Scholar 

  56. Chalise, P.R., Perni, S., Shama, G., Novac, B.M., Smith, I.R., Komg, M.G.: Lethality mechanisms in Escherichia coli induced by intense sub-microsecond electrical pulses. Appl. Phys. Lett. 89, 153902.1–153902.3 (2006)

    Google Scholar 

  57. Hair, P.S., Schoenbach, K.H., Buescher, E.S.: Sub-microsecond intense pulsed electric field applications to cells show specificity of effects. Bioelectrochemistry 61, 65–72 (2003)

    Google Scholar 

  58. Miller, L., Leor, J., Rubinsky, B.: Cancer Cells Ablation with Irreversible Electroporation. Technol. Cancer Res. Treat., 699–705 (2005)

    Google Scholar 

  59. Aly, R.E., Joshi, R.P., Stark, R.H., Svhoenbach, K.H., Bebe, S.J.: Repair time of bacteria after pulsed electric field application. In: Pulsed Power Plasma Science. IEEE Conference Record Abstracts, p. 310 (2001)

    Google Scholar 

  60. De Hann, S.W.H., Willcock, P.R.: Comparison of the energy performance of pulse generation circuits for PEF. Innov. Food Sci. Emerg.Techol., 349–356 (2002)

    Google Scholar 

  61. Keith, D., Chen, G.: Electroporation How different length and shaped electrical pulses affect the permeability of cells. In: IEEE, Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2006)

    Google Scholar 

  62. Töpfl, S.: Pulsed Electric Fields (PEF) for Permeabilization of Cell Membranes in Food- and Bioprocessing – Applications, Process and Equipment Design and Cost Analysis. In: Prozesswissenschaften, Doktor der Ingenieurwissenschaften, p. 194. der Technischen Universität Berlin, Berlin (2006)

    Google Scholar 

  63. Stanley, D.W.: Biological membrane deterioration and associated quality losses in food tissues. In: Critical Reviews in Food Science and Nutrition. F. M. Clydesdale. CRC Press, New York (1991)

    Google Scholar 

  64. Dunn, J.E., Pearlman, J.S.: Methods and apparatus for extending the shelf life of fluid food products, US 4695472 (1987)

    Google Scholar 

  65. Jayaram, S., Castle, G.S.P., Magaritis, A.: The effect of high field DC pulse and liquid medium conductivity on survivability of L. Brevis. Applied Microbiology and Biotechnology 40, 117–122 (1993)

    Google Scholar 

  66. Zhang, B., Qin, L., Barbosa-Cánovas, G.V., Swanson, B.G.: Inactivation of Escherichia coli for food pasteurization by high-strength pulsed electric fields. Journal of Food Processing and Preservation 19, 103–118 (1995)

    Google Scholar 

  67. Pothakamury, U.R., Vega, H., Zhang, Q., Barbosa-Cánovas, G.V., Swanson, B.G.: Effect of growth stage and processing temperature on the inactivation of Escherichia coli by pulsed electric fields. Journal of Food Processing 59, 1167–1171 (1996)

    Google Scholar 

  68. El Zakhem, H., Lanoisellé, J.-L., Lebovka, N.I., Nonus, M., Vorobiev, E.: Influence of temperature and surfactant on Escherichia coli inactivation in aqueous suspensions treated by moderate pulsed electric fields/. International Journal of Food Microbiology 120, 259–265 (2007)

    Google Scholar 

  69. Jayaram, S., Castle, G.S.P., Magaritis, A.: Kinetics of sterlisation of Lacatobacillas brevis cells by the application of high voltage pulses. Biotechnol. and Bioeng. 40, 1412–1420 (1992)

    Google Scholar 

  70. Bazhal, M.I., Ngadi, M.O., Raghavan, G.S.V., Smith, J.P.: Inactivation of Escherichia coli O157:H7 in liquid whole egg using combined pulsed electric field and thermal treatments. LWT—Food Science and Technology 39, 419–425 (2006)

    Google Scholar 

  71. Vega-Mercado, H., Martin-Belloso, O., Chang, F.-J., Barbosa-Cánovas, G.V., Swanson, B.G.: Inactivation of Escherichia coli and Bacillus subtilis suspended in pea soup using pulsed electric fields. J. Food Process Preserv. 20, 501–510 (1996)

    Google Scholar 

  72. Heinz, V., Toepfl, S., Knorr, D.: Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Inno. Food Sci. Emerging Technol. 4, 167–175 (2003)

    Google Scholar 

  73. Toefl, S., Mathys, A., Heinz, V., Knorr, D.: Review: Potential of High Hydrostatic Pressure and Pulsed Electric Fields for Energy Efficient and Environmentally Friendly Food Processing. Food Reviews International 22, 405–423 (2006)

    Google Scholar 

  74. Sensoy, I., Zhang, Q.H., Sastry, S.: Inactivation of Salmonella dublin by pulsed electric field. J. of Food Sci. 20, 367–381 (1997)

    Google Scholar 

  75. Fox, M.B., Esveld, D.C., Mastwijk, H.C., Boom, R.M.: Inactivation of L. Plantaum in a PEF microreactor.The effect of puls width and temperature on the inactivation. Inno. Food Sci. Emerging Technol. (2007)

    Google Scholar 

  76. Fiala, A., Wouters, P.C., van den Bosch, H.F.M., Creyghton, Y.L.M.: Coupled Electrical-fluid Model of Pulsed Electric Field Treatment in a Model Food System. J. Innove. Food Sci. Emerg.Technologies 2, 229–238 (2001)

    Google Scholar 

  77. Lindgren, M., Aronsson, K., Galt, S., Ohlssona, T.: Simulation of the temperature increase in pulsed electric field (PEF) continuous flow treatment chambers. Innovative Food Science and Emerging Technologies 3, 233–245 (2002)

    Google Scholar 

  78. Kinosita, K., Tsong, T.Y.: Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268, 438–441 (1977a)

    Google Scholar 

  79. Aronsson, K., Lindgren, M., Johansson, B.R., Ronner, U.: Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innovative Food Science & Emerging Technologies 2, 41–54 (2001)

    Google Scholar 

  80. Gaskova, D., Sigler, K., Janderova, B., Plasek, J.: Effect of high-voltage electric pulses on yeast cells: Factors influencing the killing efficiency. Bioelectrochem. Bioenergetics 39, 195–202 (1996)

    Google Scholar 

  81. Molinari, P., Pilosof, A.M.R., Jagus, R.J.: Effect of growth phase and inoculum size on the inactivation of Saccharomyces cerevisiae in fruit juice, by pulsed electric fields. Food Research International 37, 793–798 (2004)

    Google Scholar 

  82. Bergey, D.H., Holt, J.G.: Bergey’s Manual of Determinative Bacteriology. Lippincott William & Wilkins (1994)

    Google Scholar 

  83. Garcia, D., Gomez, N., Raso, J., Pagan, R.: Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innovative Food Science and Emerging Technologies 6, 388–395 (2005)

    Google Scholar 

  84. Wouters, P.C., Alvarez, I., Raso, J.: Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science and Technology, 112–121 (2001)

    Google Scholar 

  85. De Jong, P., Van Heesch, E.J.M.: Review: Effect of pulse electric field on the quality of food products. Milchwissenschaft 53, 4–8 (1998)

    Google Scholar 

  86. Fernandez-Molina, J.J., Bermudez-Aguerre, D., Altunakar, B., Swanson, B.G., Barbarosa-Canovas, G.V.: Inactivation of Listeria inocua and Pseudomonas flourescens by pulsed electric fields in skim milk: Energy requirements. J. of food processing engineering 29, 561–573 (2006)

    Google Scholar 

  87. Zhang, Q., Monsalve-Gonzalez, A., Qin, B.L., Barbosa-Canovas, G.V., Swanson, B.G.: Inactivation of Saccharomyces cerevisiae by square wave and exponential decay electric field. Journal of Food Process Engineering 17, 469–478 (1994)

    Google Scholar 

  88. Griffiths, S., Smith, S., MacGregor, S.J., Anderson, J.G., van der Walle, C., Beveridge, J.R., Grant, M.H.: Pulsed electric field treatment as a potential method for microbial inactivation in scaffold materials for tissue engineering: the inactivation of bacteria in collagen gel. Journal of Applied Microbiology 105, 963–969 (2008)

    Google Scholar 

  89. Jacob, H.E., Forster, W., Berg, H.: Microbial implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope. Z. Allg. Microbial. 21, 225–232 (1981)

    Google Scholar 

  90. Wouters, P.C., Dutreux, N., Smelt, J.P.P.M., Lelieveld, H.L.M.: Effects of Pulsed Electric Fields on Inactivation Kinetics of Listeria innocua. Applied and Environmental Microbiology 65, 5364–5371 (1999)

    Google Scholar 

  91. Hohmann, S., Mager, W.H.: Molecular biology intelligence unit. Yeast stress responses. Landes Bioscience, Austin, TX, USA (1997)

    Google Scholar 

  92. Robey, M., Benito, A., Hutson, R.H., Pascual, C., Park, S.F., Mackey, B.M.: Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Applied Environmental Microbiology 67, 4901–4907 (2001)

    Google Scholar 

  93. Lado, B.H., Bomser, J.A., Dunne, P.C., Yousef, A.E.: Pulsed Electric Field Alters Molecular Chaperone Expression and Sensitizes Listeria monocytogenes to Heat. Applied and environmental microbiology 70, 2289–2295 (2004)

    Google Scholar 

  94. Dutreux, N., Notermans, S., Wijtzes, T., Gongora-Nieto, M.M., Barbosa-Canovas, G.V., Swanson, B.G.: Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. International Journal of Food Microbiology 54, 91–98 (2000)

    Google Scholar 

  95. Tsong, T.Y.: Review on electroporation of cell membranes and some related phenomena. Biochem. Bioenergy 24, 171 (1990)

    Google Scholar 

  96. Dunne, C.P., Dunn, J., Clark, W., Ott, T., Bushnell, A.H.: Application of high energy electric field pulses to preservation of foods for combat rations. Science and Technology for Force XXI. Department of the Army. Norfolk, Virginia, June 24-27, 7 (1996)

    Google Scholar 

  97. Álvarez, I., Pagán, R., Condón, S., Raso, J.: Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Letters in Applied Microbiology 20, 691–700 (2002)

    Google Scholar 

  98. Liu, X., Yousef, A.E., Chism, G.W.: Inactivation of E. coli0157:H7 by the combination of organic acids and pulsed electric field. Journal of Food Safety 16, 287–299 (1997)

    Google Scholar 

  99. Vega-Mercado, H., Pothakamury, U.R., Chang, F.-J., Barbosa-Cánovas, G.V., Swanson, B.G.: Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles. Food Res. Int. 29, 117–121 (1996)

    Google Scholar 

  100. García, D., Gómez, N., Mañas, P., Condón, S., Raso, J., Pagán, R.: Occurrence of sublethal injury after pulsed electric fields depending on the microorganism, the treatment medium pH and the intensity of the treatment investigated. Journal of Applied Microbiology 99, 94–104 (2005)

    Google Scholar 

  101. Gomez, N., Garcıa, D.D., Alvarez, I., Raso, J.S., Condon, S.: A model describing the kinetics of inactivation of Lactobacillus plantarum in a buffer system of different pH and in orange and apple juice. Journal of Food Engineering 70, 7–14 (2005)

    Google Scholar 

  102. Aronsson, K., Ronner, U.: Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innovative Food Science & Emerging Technologies 2, 105–112 (2001)

    Google Scholar 

  103. Min, S., Reina, L., Zhang, Q.H.: Water activity and the inactivation of Enterobacter cloacae inoculated in chocolate liquor and a model system by pulsed electric field treatment. Journal of food processing and preservation 26, 323–337 (2002)

    Google Scholar 

  104. Keith, W., Harris, L., Hudson, L., Griffiths, M.: Pulsed electric field fields as a processing alternative for microbial reduction in spice. J. Food Res. Int. 30, 185–191 (1997)

    Google Scholar 

  105. Keith, W., Harris, L., Hudson, L., Griffiths, M.: Reduction of bacterial levels in flour by pulsed electric fields. J. Food Processing Eng. 21, 263–269 (1998)

    Google Scholar 

  106. Barbosa-Canovas, G.V., Maria, S.T., Cano, M.P.: Novel Food Processing Technologies. CRC, Boca Raton (2004)

    Google Scholar 

  107. Neidhardt, F.C., Ingraham, J.L., Schaechter, M.: The effects of temperature, pressure, and pH. In: Physiology of the Bacterial Cell. A Molecular Approach, pp. 226–246. Sinauer, Sunderland (1990)

    Google Scholar 

  108. Palou, E., Lopez_Malo, A., Barbosa-Canovas, G.V., Welti-Chanes, J., Swanson, B.G.: High hydrostatic pressure as a hurdle for Zygosaccharomyces bailii inactivation. Journal of Food Science 62, 855–857 (1997)

    Google Scholar 

  109. Jay, J.M.: Modern Food Microbiology, 4th edn. Chapman & Hall, New York (1992)

    Google Scholar 

  110. Raso, J., Pagán, R.R., Condón, S.: Nonthermal technologies in combination with other preservation factors. In: Barbosa-Cánovas, G.V., Tapia, M.S., Cano, M.O. (eds.) Novel food processing technologies, pp. 453–476. Marcel Decker/CRC Press, Boca Raton (2005)

    Google Scholar 

  111. Leistner, L.: Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology 55, 181–186 (2000)

    Google Scholar 

  112. Leistner, L.: Food preservation by combined methods. Food Research International 25, 151–158 (1992)

    Google Scholar 

  113. Leistner, L.: Further developments in the utilization of hurdle technology for food preservation. Journal of Food Engineering 22, 421–432 (1994)

    Google Scholar 

  114. Yousef, A.E.: Efficacy and limitations of non-thermal preservation technologies. IFT Annual Meeting Book of Abstracts, Session 9-1 (2001)

    Google Scholar 

  115. Ross, A.I.V., Griffiths, M.W., Mittal, G.S., Deeth, H.C.: Combining nonthermal technologies to control foodborne microorganisms. International Journal of Food Microbiology 89, 125–138 (2003)

    Google Scholar 

  116. Evrendilek, G.A., Zhang, Q.H., Richter, E.R.: Application of Pulsed Electric Fields to Skim Milk inoculated with Staphylococcus aureus. Biosystems Engineering 87, 137–144 (2004)

    Google Scholar 

  117. Góngora-Nieto, M.M., Sepulveda, D.R., San-Martin, M.F., Barbarosa-Canovas, G.V.: Influence of treatment temperature on the inactivation of Listeria innocua by pulsed electric fields. Lebensmittel-Wissenschaft und Technologie 38, 167–172 (2005)

    Google Scholar 

  118. Calderón-Miranda, M.L., Barbosa-Cánovas, G.V., Swanson, B.G.: Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Int. J. Food Microbiol. 51, 7–17 (1999)

    Google Scholar 

  119. Calderón-Miranda, M.L., Barbosa-Cánovas, G.V., Swanson, B.G.: Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin. Int. J. Food Microbiol. 51, 19–30 (1999)

    Google Scholar 

  120. Dutreux, N., Notermans, S., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G.: Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields. Int. J. Food Microbiol. 60, 147–152 (2000)

    Google Scholar 

  121. Lu, J., Mittal, G.S., Griffiths, M.W.: Reduction in levels of Escherichia coli O157:H7 in apple cider by pulsed electric fields. Journal of Food Protection 64, 964–969 (2001)

    Google Scholar 

  122. Pol, I.E., Maswijk, H.C., Bartels, P.V., Smid, E.J.: Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 66, 428–430 (2000)

    Google Scholar 

  123. Jagus, R., Terebiznik, M.R., Cerrutti, P., Pilosof, A.M.R., Huergo, M.S.: Combined effects of pulsed electric field technology and nisin on E. coli inactivation. IFT Annual Meeting Book of Abstracts, Session 83A-6 (1999)

    Google Scholar 

  124. Smith, K., Mittal, G.S., Griffiths, M.W.: Pasteurization of milk using pulsed electric field and antimicrobials. Journal of Food Science 67, 2304–2308 (2002)

    Google Scholar 

  125. Liang, Z., Mittal, G.S., Griffiths, M.W.: Inactivation of Salmonella Typhimurium in orange juice containing antimicrobial agents by pulsed electric field. Journal of Food Protection 65, 1081–1087 (2002)

    Google Scholar 

  126. Buranasompob, A.: Kinetics of the inactivation of microorganisms by water insoluble polymers with antimicrobial activity. In: Institut für Lebensmitteltechnologie Lebensmittelbiotechnologie und prozesstechnik. Doktor der Ingenieurwissenschaften, p. 135. der Technischen Universität Berlin, Berlin (2005)

    Google Scholar 

  127. Martínez, V., Sobrino López, A., Ben Omar, N., Abriouel, H., Lucas López, R., Valdivia, E., Martín Belloso, O., Gálvez, A.: Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. International Journal of Food Microbiology 128, 244–249 (2008)

    Google Scholar 

  128. Mosqueda-Melgar, J., Raybaudi-Massilia, R.M.R., Martín-Bellos, O.: Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Science and Emerging Technologies 9, 328–340 (2008)

    Google Scholar 

  129. Knorr, D., Geulen, M., Grahl, T., Sitzmann, W.: Food application of high voltage field pulses. Trends in Food Science and Technology 5, 71–75 (1994)

    Google Scholar 

  130. Marquez, V.O., Mittal, G.S., Griffiths, M.W.: Destruction and inhibition of bacterial spores by high voltage pulsed electric field. Journal of Food Science 62, 399–401, 409 (1997)

    Google Scholar 

  131. Simpson, M.V., Barbosa-Cánovas, G.V., Swanson, B.G.: The Combined inhibitory effect of lysozyme and high voltage pulsed electric fields on the growth of Bacillus subtilis spores. IFT Annual Meeting: Book of Abstracts 267 (1995)

    Google Scholar 

  132. Spilimbergo, S., Elvassore, N., Bertucco, A.: Microbial inactivation by high-pressure. J. Supercrit. Fluids 22, 55–63 (2002)

    Google Scholar 

  133. Dillow, A., Dehghani, F., Hrkach, J., Foster, N., Langer, R.: Bacterial inactivation by using near- and supercritical carbon dioxide. Proc. Natl. Acad. Sci. USA 96, 10344–10348 (1999)

    Google Scholar 

  134. Spilimbergo, S., Dehghani, F., Bertucco, A., Foster, N.R.: Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature. Biotechnology and Bioengineering 82, 118–125 (2003)

    Google Scholar 

  135. Pagan, R., Esplugas, S., Gongora-Nieto, M.M., Barbosa-Canovas, G.V., Swanson, B.G.: Inactivation of Bacillus subtilis spores using high intensity pulsed electric fields in combination with other food conservation technologies. Food Science and Technology International 4, 33–44 (1998)

    Google Scholar 

  136. Heinz, V., Knorr, D.: Effect of pH, ethanol addition and high hydrsatic pressure on the inactivation of Bacillus subtilis by pulsed electric field. Inno. Food Sci. Emerging Technol. 1, 151–159 (2000)

    Google Scholar 

  137. Herberhold, H., Fahsel, S., Ulmer, H.M., Gänzle, M.G., Winter, R., Vogel, R.F.: Effects of Pressure-Induced Membrane Phase Transitions on Inactivation of HorA, an ATP-Dependent Multidrug Resistance Transporter, in Lactobacillus plantarum. Applied and Environmental Microbiology 68, 1088–1095 (2002)

    Google Scholar 

  138. Piyasena, P., Mohareb, E., McKellar, R.C.: Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology 87, 207–216 (2003)

    Google Scholar 

  139. Mason, T.J., Joyce, E., Phull, S.S., Lorimer, J.P.: Potential uses of ultrasound in the biological decontamination of water. Ultras. Sonoch. 10, 319–323 (2003)

    Google Scholar 

  140. Jin, Z.T., Su, Y., Tuhela, L., Singh, B., Zhang, Q.H.: Inactivation of Bacillus subtilis using high voltage pulsed electric fields and ultrasonication. IFT Annual Meeting Book of Abstracts, Session 83A-6 (1998)

    Google Scholar 

  141. Xin, Q., Zhang, X., Li, Z., Lei, L.: Sterilization of oil-field re-injection water using combination treatment of pulsed electric field and ultrasound. Ultrasonics Sonochemistry 16, 1–3 (2009)

    Google Scholar 

  142. Huang, E., Mittal, G.S., Griffiths, M.W.: Inactivation of Salmonella enteritidis in Liquid Whole Egg using Combination Treatments of Pulsed Electric Field, High Pressure and Ultrasound. Biosystems Engineering 94, 403–413 (2006)

    Google Scholar 

  143. Alvarez, I., Heiz, V.: Hurdle technology and the preservation of food by pulsed electric fields. In: Lelieveld, H.L.M., Notermans, S., de Haan, S.W.H. (eds.) Food preservation by pulsed electric fields. From research to applications. Wood publishing limted, Cambridge England (2007)

    Google Scholar 

  144. FDA, Irradiation in the production, processing and handling of food. Federal Register -Rules and Regulations 65(230) (2000)

    Google Scholar 

  145. Noci, F., Riener, J., Walkling-Ribeiro, M., Cronin, D.A., Morgan, D.J., Lyng, J.G.: Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple Juice. Journal of Food Engineering 85, 141–146 (2008)

    Google Scholar 

  146. WHO, Health through safe drinking water and basic sanitation (2008), http://www.who.int/water_sanitation_health/mdg1/en/index.html

  147. Gadgil, A.J., Derby, E.A.: Providing Safe Drinking Water to 1.2 Billion Unserved People. Presented at 96th Annual AWMA conference, San Diego, CA (2003)

    Google Scholar 

  148. Vernhesa, M.C., Benichoua, A., Perninb, P., Cabanesc, P.A., Teissi, J.: Elimination of free-living amoebae in fresh water with pulsed electric fields. Water Research 36, 3429–3438 (2002)

    Google Scholar 

  149. Beveridge, J.R., Wall, K., Scott, J., Macgregor, S.J., Anderson, J.G., Rowan, H.J.: Pulsed Electric Field Inactivation of Spoilage Microorganisms in Alcoholic Beverages. Proceeding of the IEEE 92, 1138–1143 (2004)

    Google Scholar 

  150. Doevenspeck, H.: Method for treating beer. USA3625843 (1971)

    Google Scholar 

  151. Ulmer, H.M., Helnz, V., Gänzle, M.G., Knorr, D., Vogel, R.F.: Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer. J. Appl. Microbiol. 93, 326–335 (2002)

    Google Scholar 

  152. Evrendilek, G.A., Li, S., Dantzer, W.R., Zhang, Q.H.: Pulsed Electric Field Processing of Beer: Microbial, Sensory, and Quality Analyses. Journal of Food Science 69, 228–232 (2004)

    Google Scholar 

  153. Raso, J., Calderon, M.L., Gongora, M., Barbosa-Canovas, G.V., Swanson, B.G.: Inactivation of Zygosaccharomyces bailli in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. Journal of Food Science 63, 1042–1044 (1998)

    Google Scholar 

  154. Raso, J., Calderon, M.L., Gongora, M., Barbosa-Canovas, G.V., Swanson, B.G.: Inactivation of mold ascospores and conidiospores suspended in fruit juices by pulsed electric fields. Journal of Food Science and Technology 31, 668–672 (1998)

    Google Scholar 

  155. Wu, Y., Mittal, G.S., Griffiths, M.W.: Effect of Pulsed Electric Field on the Inactivation of Microorganisms in Grape Juices with and without Antimicrobials. Biosystems Engineering 901, 1–7 (2005)

    Google Scholar 

  156. Vega-Mercado, H., Martin-Belloso, O., Qin, B.-L., Chang, F.-J., Gongora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G.: Non-thermal food preservation: pulsed electric fields. Trends Food Sci. Technol. 8, 151–157 (1997)

    Google Scholar 

  157. Evrendilek, G.A., Jin, Z.T., Ruhlman, K.T., Qiu, X., Zhang, Q.H., Richter, E.R.: Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innovative Food Science & Emerging Technologies 1, 77–86 (2000)

    Google Scholar 

  158. Charles-Rodriguez, A.V., Nevaíez-Moorillon, G.V., Zhang, Q.H., Ortega-Rivas, E.: Comparison of thermal processing an pulsed electric fields treatment in pasteurization of apple juice. Food and Bioproducts Processing 87, 93–97 (2007)

    Google Scholar 

  159. Agular Rosa, S.F., Ballinas-Casarubias, M.L., Nevarez-Moorillon, G.V., Martin-Beloso, O., Ortega-Rivas, E.: Thermal and electric fields pasteurization of apple juice: effects of physicochemical properties and flavour compounds. Presented at International Symposium of CIGR Secton IV on Future of Food Engineering N2, Warsaw, Pologne (2007)

    Google Scholar 

  160. Sitzmann, V.: High voltage pulse techniques for food preservation. In: Gould, G.W. (ed.) New methods for food preservation, pp. 236–252. Blackie Academic and Professional, London (1995)

    Google Scholar 

  161. Zhang, Q.H., Qiu, X., Sharma, S.K.: Recent development in pulsed electric field processing. In: National Food Processors Association. New Technologies Yearbook, Washington, DC, pp. 31–42 (1997)

    Google Scholar 

  162. Min, S., Jin, Z.T., Min, S.K., Yeom, H., Zhang, Q.H.: Commercial-Scale Pulsed Electric Field Processing of Orange Juice. Journal of Food Science 68, 1265–1271 (2006)

    Google Scholar 

  163. Cortésa, C., Estevea, M.J., Frígola, A.: Color of orange juice treated by High Intensity Pulsed Electric Fields during refrigerated storage and comparison with pasteurized juice. Food Control 19, 151–158 (2008)

    Google Scholar 

  164. Ayhan, Z., Yeom, H.W., Zhang, Q.H., Min, D.B.: Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials. J. Agric. Food Chem. 49, 669–674 (2001)

    Google Scholar 

  165. Yeom, H.W., Streaker, C.B., Zhang, Q.H., Min, D.B.: Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J. Agric. Food Chem. 48 (2000)

    Google Scholar 

  166. Escolà-Hernández, J., Elez-Martínez, P., Soliva-Fortuny, R.C., Martín-Bellos, O.: Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiology 22, 311–319 (2005)

    Google Scholar 

  167. Elez-Martínez, P., Escolà-Hernández, J., Soliva-Fortuny, R.C., Martín-Belloso, O.: Inactivation of Saccharomyces cerevisiae Suspended in Orange Juice Using High-Intensity Pulsed Electric Fields. Journal of Food Protection 67, 2596–2602 (2004)

    Google Scholar 

  168. Mc Donald, C.J., Lloyd, S.W., Vitale, M.A., Petersson, K., Innings, F.: Effects of Pulsed Electric Fields on Microorganisms in Orange Juice Using Electric field Strengths of 30 and 50 kV/cm. Journal of Food Science 65, 984–989 (2000)

    Google Scholar 

  169. El-Hag, A.H., Jayaram, S.H., Griffiths, M.W.: Inactivation of Naturally Grown Microorganisms in Orange Juice Using Pulsed Electric Fields. IEEE transactions on plasma science 34, 1412–1415 (2006)

    Google Scholar 

  170. Min, S.M., Jin, Z.T., Zhang, Q.H.: Commercial scale pulsed electric field processing of tomato juice. J. Agric. Food Chem. 51, 3338–3344 (2003)

    Google Scholar 

  171. Odriozola-Serrano, I., Aguiló-Aguayo, I., Soliva-Fortuny, R., Gimeno-Añó, V., Martín-Belloso, O.: Lycopene, Vitamin C, and Antioxidant Capacity of Tomato Juice as Affected by High-Intensity Pulsed Electric Fields Critical Parameters. J. Agric. Food Chem. 55, 9036–9042 (2007)

    Google Scholar 

  172. Nguyen, P., Mittal, G.S.: Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials. Chemical engineering and processing 46, 360–365 (2007)

    Google Scholar 

  173. Dunn, J.E., Pearlman, J.S.: Methods and apparatus for extending the shelf-life of fluid food products. I. Maxwell Laboratories, Ed. U. S. Patent 4,695,472 (1987)

    Google Scholar 

  174. Dunn, J.: Pulsed light and pulsed electric field for foods and eggs. Poul Sci. 75, 1133–1136 (1996)

    Google Scholar 

  175. Fernandez-Molina, J.J., Barkstrom, E., Torstensson, P., Barbosa-Cánovas, G.V., Swanson, B.G.: Shelf-life extension of raw skim milk by combining heat and pulsed electric fields. Food Res. Int. (1999)

    Google Scholar 

  176. Qin, B., Pothakamury, U.R., Vega, H., Martin, O., Barbosa-Cánovas, G.V., Swanson, B.G.: Food pasteurization using high intensity pulsed electric fields. J. Food Technol. 49, 55–60 (1995)

    Google Scholar 

  177. Calderon-Miranda, M.L.: Inactivation of listeria inocua by pulsed electric fields and nisin. Washington State University, Pullman (1998)

    Google Scholar 

  178. Reina, L.D., Jin, Z.T., Yousef, A.E., Zhang, Q.H.: Inactivation of Listeria monocytogenes in milk by pulsed electric field. J. Food Protect. 61, 1203–1206 (1998)

    Google Scholar 

  179. Shamsi, K., Versteeg, C., Sherkat, F., Wan, J.: Alkaline phosphatase and microbial inactivation by pulsed electric field in bovine milk. Innovative Food Science and Emerging Technologies 9, 217–223 (2008)

    Google Scholar 

  180. Craven, H.M., Swiergon, P., Midgely, J., Ng, S., Versteeg, C., Coventry, M.J., Wan, J.: Evaluation of pulsed electric field and minimal heat treatments for inactivation of pseudomonads and enhancement of milk shelf-life. Innovative Food Science and Emerging Technologies 9, 211–216 (2008)

    Google Scholar 

  181. Noci, F., Walkling-Ribeiro, M., Cronin, D.A., Morgan, D.J., Lyng, J.G.: Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk. International Dairy Journal, 1–6 (2008)

    Google Scholar 

  182. Otunola, A., El-Hag, A., Jayaram, S., Anderson, W.A.: Effectiveness of Pulsed Electric Fields in Controlling Microbial Growth in Milk. International Journal of Food Engineering 4, Article 1 (2008), doi:10.2202/1556-3758.1494

    Google Scholar 

  183. Sampedro, F., Rodrigo, D., Martineza, A., Barbarosa-Canovas, G.V., Rodrigo, M.: Review: Application of pulsed electric fields in egg and egg derivatives. Food Science and Technology International 12, 397–405 (2006)

    Google Scholar 

  184. Sampedro, F., Rivas, A., Rodrigo, D., Martınez, A., Rodrigo, M.: Pulsed electric fields inactivation of Lactobacillus plantarum in an orange–juice milk based beverage: Effect of process parameters. Journal of Food Engineering 80, 931–938 (2007)

    Google Scholar 

  185. Chullkyoon, M., Sangki, L.: Sterilization of Yakju (Rice Wine) on a Serial Multiple Electrode Pulsed Electric Field Treatment System. Korean J. of Food Science and Technology 32, 356–362 (2000)

    Google Scholar 

  186. Su, Y.K., Yong, S.P., Chulkyoon, M.: Sterilisation of yakju (rice wine) using a batch-type high voltage pulsed field system. Korean J. of Food Science and Technology 31, 1247–1253 (1999)

    Google Scholar 

  187. Poppe, C.: Epidemiology of Salmonella enterica serovar Enteritidis. In Salmonella enterica Serovar Enteritidis. In: Gast, R.K., Saeed, A.M., Potter, M.E., Wall, P.G. (eds.) Humans and Animals, Epidemiology, Pathogenesis, and Control, pp. 3–19. Iowa State University Press, Ames (1999)

    Google Scholar 

  188. Cunningham, F.E.: Egg product pasteurization. In: Cotterill, O.J., Stadelman, W.J. (eds.) Egg Science and Technology, pp. 289–323. AVI Publishing Co., Westport (1986)

    Google Scholar 

  189. Foegeding, P.M., Leasor, S.: Heat resistance and growth of Listeria monocytogenes in liquid whole egg. J. Food Prot. 53, 9–14 (1990)

    Google Scholar 

  190. Ma, L., Chang, F.J., Barbosa-Cánovas, G.V.: Inactivation of E. coli in liquid whole eggs using pulsed electric fields technologies. New frontiers in food engineering. In: Proceedings of the Fifth Conference of Food Engineering. American Institute of Chemical Engineers, pp. 216–221 (1997)

    Google Scholar 

  191. Hermawan, N., Evrendilek, G.A., Dantzer, W.R., Zhang, Q.H., Richter, E.R.: Pulsed electric field treatment of liquid whole egg inoculated with salmonella enteritidis. Journal of Food Safety 24, 71–85 (2007)

    Google Scholar 

  192. Sampedrdo, F., Rodrigo, D., Martineza, A., Barbarosa-Canovas, G.V., Rodrigo, M.: Review: Application of pulsed electric fields in egg and egg derivatives. Food Science and Technology International 12, 397–405 (2006)

    Google Scholar 

  193. Zhao, W., Yang, R., Lu, R., Wang, M., Qian, P., Yang, W.: Effect of PEF on microbial inactivation and physical–chemical properties of green tea extracts. LWT 41, 425–431 (2008)

    Google Scholar 

  194. Wang, L.F., Kim, D.M., Chang, L.Y.: Effects of heat processing and storage on flavanols and sensory qualities of green tea beverage. Journal of Agriculture and Food Chemistry 48, 4227–4232 (2000)

    Google Scholar 

  195. Evrendilek, G.A., Tok, F.M., Soylu, E.M., Soylu, S.: Inactivation of Penicillium expansum in sour cherry juice, peach and apricot nectars by pulsed electric fields. Food Microbiology 25, 662–667 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golberg, A., Fischer, J., Rubinsky, B. (2010). The Use of Irreversible Electroporation in Food Preservation. In: Rubinsky, B. (eds) Irreversible Electroporation. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05420-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05420-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05419-8

  • Online ISBN: 978-3-642-05420-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics