Skip to main content

Climate change in the Amazon Basin: Tipping points, changes in extremes, and impacts on natural and human systems

  • Chapter
  • First Online:
Tropical Rainforest Responses to Climatic Change

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

The Amazon River system is the single, largest source of freshwater on Earth and its flow regime is subject to interannual and long-term climate variability, which translate into large variations in downstream discharge (Richey et al., 1989; Marengo and Nobre, 2001; Marengo 2004, 2005, 2006, 2007; Milly et al., 2005, Marengo et al., 2008a, b; Cox et al., 2008; Zeng et al., 2008). To predict future climate (rainfall) change and consequent river variability an understanding of the physical mechanisms related to regional and large-scale atmospheric–oceanic–biospheric forcings is required. The temporal and spatial nature and impact of any variability in the hydrometeorology of the Amazon Basin must be considered in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F. (2004) Smoking rain clouds over the Amazon. Science, 303, 1337–1342.

    Article  CAS  Google Scholar 

  • Arago, L. E. O. C., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y., Anderson, L., Saatchi, S. (2008) Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Trans. Royal Society London B, 363, 1779–1785, doi: 10.1098/rstb.2007.0026.

    Article  Google Scholar 

  • Barlow, J., Peres, C. A., Lagan, B. O., and Haugaasen, T. (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6(1), 6–8.

    Article  Google Scholar 

  • Betts, R., Cox, P., Collins, M., Harris, P., Huntingford, C., and Jones, P. (2004) The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global change warming. Theoretical and Applied Climatology, 78, 157–175.

    Article  Google Scholar 

  • Betts, R. A., Malhi, Y., and Roberts, J. T. (2008) The future of the Amazon: New perspectives from climate, ecosystem and social sciences. Philosophical Trans. Royal Society London B, 363, 1729–1735.

    Article  Google Scholar 

  • Bush, M. B., Hanselman, J. A., and Gosling, W. D. (2010) Non-linear climate change and Andean feedbacks: An imminent turning point? Global Change Biology, doi: 10.1111/ j.1365-2486.2010.02203.

    Google Scholar 

  • Cochrane, M. A. and Laurance, W. F. (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio: J. Human Environment, 37(7), 522–527.

    Article  Google Scholar 

  • Cox, P., (2001) Description of the “TRIFFID” Dynamic Global Vegetation Model (Hadley Centre Technical Note 24). Hadley Centre, Bracknell, U.K.

    Google Scholar 

  • Cox, P., Betts, R., Jones, C., Spall, S., and Totterdell, T. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.

    Article  CAS  Google Scholar 

  • Cox, P., Betts, R., Collins, M., Harris, P., Huntingford, C., and Jones, C. (2004) Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–156.

    Article  Google Scholar 

  • Cox, P., Harris, P., Huntingford, C., Betts, R., Collins, M., Jones, C., Jupp, T., Marengo, J. A., and Nobre, C. A (2008) Increased risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212–216.

    Article  CAS  Google Scholar 

  • Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W.-T., Laprise, R. et al. (2007) Regional climate projections. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis (contribution of Working Group I to the Fourth Assessment Report of the Interglovernmental Panel on Climate Change). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Da Silva, R. R., Werth, D., and Avissar, R (2008) Regional impacts of future land-cover changes on the Amazon Basin wet-season climate. J. Climate, 21, 1153–1170.

    Article  Google Scholar 

  • D’Almeida, C., Vorosmarty, C., Hurtt, G. C., Marengo, J. A., Dingman, S. L., and Keim, B. D. (2007) The effects of deforestation on the hydrological cycle in Amazonia: A review on scale and resolution. Int. J. Climatol., 27, 633–647.

    Article  Google Scholar 

  • Coe, M. T., Costa, M. H., and Soares-Filho, B. S. (2009) The influence of historical and potential future deforestation on the stream flow. J. Hydrology, 369, 165–174.

    Article  Google Scholar 

  • Cutrim, E., Martin, D. R., and Robin, R. M. (1995) Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Amer. Meteorol. Society, 76, 1801–1805.

    Article  Google Scholar 

  • Eltahir, E. A. B. and Bras, R. L. (1994) Precipitation recycling in the Amazon Basin. Quart. J. Roy. Meteorol. Soc., 120, 861–880.

    Article  Google Scholar 

  • Friend, A. D. and White, A. (2000) Evaluation and analysis of a dynamic terrestrial ecosystem model under preindustrial conditions at the global scale. Global Biogeochemical Cycles, 14, 1173–1190.

    Article  CAS  Google Scholar 

  • Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R. (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling, 95, 249–287.

    Google Scholar 

  • Fu, R., Dickinson, R. E., Chen, M. X., and Wang, H. (2001) How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon? J. Climate, 14, 4003–4026.

    Article  Google Scholar 

  • Gash, J. and Nobre, C. A. (1997) Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bull. Amer. Meteorol. Society, 78, 823–830.

    Article  Google Scholar 

  • Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S. (2004) Terrestrial vegetation and water balance hydrological evaluation of a dynamic global vegetation model. J. Hydrology, 286, 249–270.

    Article  CAS  Google Scholar 

  • Hall, A. (2008) Better RED than dead: Paying the people for environmental services in Amazonia. Philosophical Trans. Royal Society London B, 363, 1925–1932.

    Article  Google Scholar 

  • Hirota, M., Nobre, C. A., Oyama, M. D., and Bustamante, M. (2010) The climatic sensitivity of the forest, savanna and forest–savanna transition in tropical South America. New Phytologist, 187(3), 707–719.

    Article  Google Scholar 

  • Kirchoff, V. W. J. H. and Escada, P. A. S. (1998) O Megainceˆndio do Se´culo [The Wildfire of the Century]. Transect, Sa˜o Jose dos Campos, SP, Brazil (86 pp.) [in Portuguese].

    Google Scholar 

  • Kriegler, E. J. W., Hall, H., Held, R., Dawson, R., and Schellnhuber, H. J. (2009) Imprecise probability assessment of tipping points in the climate system. Proceedings of the National Academy of Sciences U.S.A, 106, 5041–5046.

    Article  CAS  Google Scholar 

  • Krinner, G., Viovy, N., and De Noblet-Ducoudre, N. (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochemical Cycles, 19, GB1015, doi: 10.1029/2003GB002199.

  • Lapola, D. M., Oyama, M. D., and Nobre, C. A. (2009) Exploring the range of climate–biome projections for tropical South America: The role of CO2 fertilization and seasonality. Global Biogeochemical Cycles, 32, 23–27.

    Google Scholar 

  • Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J. (2008) Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences U.S.A, 105, 1786–1793.

    Article  CAS  Google Scholar 

  • Levy, P. E., Cannell, M. G. R., and Friend, A. D. (2004) Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environmental Change, 14, 21–30.

    Article  Google Scholar 

  • Li, W., Fu, R., and Dickinson, R. E. (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res., 111, D02111.

    Article  Google Scholar 

  • Li, W., Fu, R., Negro´ n Jua´ rez, R. N., and Fernandes, K. (2008) Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. Philosophical Trans. Royal Society London B, 363, 1767–1772.

    Article  Google Scholar 

  • Liebmann, B. and Marengo, J. (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J. Climate, 14, 4308–4318.

    Article  Google Scholar 

  • Malhi, Y., Roberts, J. T. R., Betts, R. A., Killeen, T. J., Li, W., and Nobre, C. A. (2008) Climate change, deforestation, and the fate of the Amazon. Science, 319, 169–172, doi: 10.1126/ science.1146961.

    Article  CAS  Google Scholar 

  • Malhi, Y., Araga˜ o, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweenney, C., and Meir, P. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences U.S.A, Special Feature: Sustainability Science. Available at http://www.pnas.org_cgi_doi_10.1073.pnas.0804619106

  • Marengo, J. A. (1992) Interannual variability of surface climate in the Amazon Basin. Int. J. Climatol.,, 12, 853–863.

    Article  Google Scholar 

  • Marengo, J. A. (2004) Interdecadal variability and trends of rainfall across the Amazon Basin. Theoretical and Applied Climatology, 78, 79–96.

    Article  Google Scholar 

  • Marengo, J. A. (2005) On the characteristics and variability of the water budget in the Amazon Basin. Climate Dynamics, 24, 11–22.

    Article  Google Scholar 

  • Marengo, J. A. (2006) On the hydrological cycle of the Amazon Basin: A historical review and current state of the art. Revista Brasileira de Meteorologia, 21, 1–19.

    Article  Google Scholar 

  • Marengo, J. A. (2007) Climate change and hydrological modes of the wet tropics. In: M. B. Bush and J. R. Flenley (Eds.), Tropical Rainforest Responses to Climatic Change, pp. 237–268. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Marengo, J. A. (2009) Long-term trends and cycles in the hydrometeorology of the Amazon Basin since the late 1920s. Hydrological Processes, 23, 3236–3244.

    Article  Google Scholar 

  • Marengo, J. A. and Nobre, C. A. (2001) The hydroclimatological framework in Amazonia. In: J. Richey, M. McClaine, and R. Victoria (Eds.), Biogeochemistry of Amazonia, pp. 17–42. John Wiley & Sons, New York.

    Google Scholar 

  • Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., De Oliveira, G. S., Oliveira, R., Camargo, H., Alves, L. M., and Brown, I. F. (2008a) The drought of Amazonia in 2005. J. Climate, 21, 495–516.

    Article  Google Scholar 

  • Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F., and Oyama, M. D. (2008b) Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Trans. Royal Society London B, 363, 1773–1778.

    Google Scholar 

  • Marengo J. A., Jones, R., Alves, L. M., and Valverde, M. (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol., 30, 1–15.

    Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., et al. (2007) Global climate projections. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.) Climate Change 2007: The Physical Science Basis (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Milly, P. C. D., Dunne, K. A., and Vecchia, A. V. (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347–350.

    Article  CAS  Google Scholar 

  • Molion, L. C. B. (1975) A climatonomic study of the energy and moisture fluxes of the Amazon Basin with consideration on deforestation. Ph.D. dissertation, Department of Meteorology, University of Wisconsin Madison (190 pp.).

    Google Scholar 

  • Nepstad, D. P., Lefebvre, U. L., Silva, J. R., Tomasella, J., Schlesinger, P., Solorzano, L., Moutinho, P., and Ray, D. (2004) Amazon drought and its implications for forest flammability and tree growth: A basinwide analysis. Global Change Biology, 10, 704–717.

    Article  Google Scholar 

  • Nepstad, D. P., Stickler, C., Soares-Filho, B., and Merry, F. (2008) Interactions among Amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philosophical Trans. Royal Society London B, 363, 1737–1746.

    Article  Google Scholar 

  • Nobre, C. A. and Borma, L. S. (2009) “Tipping points” for the Amazon forest. Current Opinion in Environmental Sustainability, 1, 28–36.

    Article  Google Scholar 

  • Nobre, C. A., Sellers, P. J., and Shukla, J. (1991) Amazonian deforestation and regional climate change. J. Climate, 4, 957–988.

    Article  Google Scholar 

  • Nobre, C. A., Sampaio, G., Cardoso, M., and Salazar, L. (in review) Synergistic deforestation, climate change and fire impacts on the future biomes distribution in Amazonia. Geophys.

    Google Scholar 

  • Res. Lett. Oyama, M. D. and Nobre, C. A. (2003) A new climate–vegetation equilibrium state for tropical South America. Geophys. Res. Lett., 30, 23–28.

    Google Scholar 

  • Phillips, O. L., Arago, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., Lo´ pez-Gonza´ lez, G. Malhi, Y., Monteagudo, A., Peacock, J., and Quesada, C. A. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344–1347.

    Article  CAS  Google Scholar 

  • Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S., Lucht, W., Cramer, W., and Cox, P. (2010) Estimating the risk of Amazonian forest dieback. New Phytologist, 187(3), 694–706, August.

    Google Scholar 

  • Richey, J. E., Nobre, C., and Deser, C. (1989) Amazon river discharge and climate variability: 1903 to 1985. Science, 246, 101–103.

    Article  CAS  Google Scholar 

  • Ronchail, J., Cochonneau, G., Molinier, M., Guyot, J. L., Gorreti, A., Guimara˜ es, V., and de Oliveira, E. (2002) Interannual rainfall variability in the Amazon Basin and sea surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int. J. Climatol., 22, 1663–1686.

    Article  Google Scholar 

  • Roy, S. B. and Avissar, R. (2002) Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. D: Atmospheres, 107, XLXXVII– XLXXVIII.

    Google Scholar 

  • Salati, E. (1987) The forest and the hydrological cycle. In: R. E. Dickinson (Ed.), The Geophysiology of Amazonia, pp. 273–296. John Wiley & Sons, New York.

    Google Scholar 

  • Salati, E. and Nobre, C. A. (1991) Possible climatic impacts of tropical deforestation. Climatic Change, 19, 177–196.

    Article  Google Scholar 

  • Salazar, L. F., Nobre, C. A., and Oyama, M. D. (2007) Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett., 34, L09708.

    Article  Google Scholar 

  • Salazar, L. F. (2009) Consequ¨ eˆncias das mudanc¸as clima´ ticas na distribuic¸a˜o dos biomas na Ame´ rica do Sul, com eˆnfase na Amazoˆ nia e Nordeste. Tese (Doutorado em Meteorologia, 277 pp., INPE-16573-TDI/1566), Instituto Nacional de Pesquisas Espaciais, Sa˜o Jose´ dos Campos, Brazil [in Portuguese].

    Google Scholar 

  • Saleska, S. R., Didan, K., Huete, A. R., and Rocha, H. R. (2007) Amazon forests green-up during 2005 drought. Science, 318, 612, doi: 10.1126/science.1146663.

    Article  CAS  Google Scholar 

  • Sampaio, G., Nobre, C. A., Costa, M. H., Satyamurty, P., Soares-Filho, B. S., and Cardoso, M. (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett., 34, L17709.

    Article  Google Scholar 

  • Sampaio, G. (2008) Climatic consequences of gradual conversion of Amazonian tropical forests into degraded pasture or soybean cropland: A GCM simulation study, Ph.D. thesis in Meteorology (INPE-15263-TDI/1346, 417 pp.). Instituto Nacional de Pesquisas Espaciais, Sa˜o Jose´ dos Campos, Brazil. Available at http://urlib.net/sid.inpe.br/mtc-m17@80/2008/02.28.17.17

  • Sitch, S., Smith, B., and Prentice, I. C. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic vegetation model. Global Change Biology, 9, 161–185.

    Article  Google Scholar 

  • Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P. et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biology, 14, 2015–2039.

    Article  Google Scholar 

  • Sombroek, W.G. (2001) Spatial and temporal patterns of Amazon rainfall. Ambio, 30, 388–396.

    CAS  Google Scholar 

  • Sternberg, H. R. (1987) Aggravation of floods in the Amazon River as a consequence of deforestation? Geografiska Annaler, 69A, 201–219.

    Article  Google Scholar 

  • Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A. (2006) Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185–211.

    Article  Google Scholar 

  • Tomasella, J., Borma, L. S., Marengo, J. A., Rodriguez, D. A., Cuartas, L. A., Nobre, C., and Prado, M. C. R. (2011) The droughts of 1996–1997 and 2004–2005 in Amazonia: Hydrological response in the river main-stem. Hydrological Processes, 25, 1228–1242.

    Article  Google Scholar 

  • Trivedi, M. R., Mitchell, A. W., Mardas, N., Parker, C., Watson, J. E., and Nobre, A. D. (2009) REDD and PINC: A new policy framework to fund tropical forests as global “ecoutilities”. IOP Conf. Series: Earth and Environmental Science, 8, 012005, doi: 10.1088/ 1755-1315/8/1/012005.

    Google Scholar 

  • Viana, V. (2009) Seeing REDD in the Amazon. Tiempo, 73, 3–6. Available at http://www.tiempocyberclimate.org/newswatch/comment090615.htm

  • Wagner, R. (1996) Decadal-scale trends in mechanisms controlling meridional sea surface temperature gradients in the tropical Atlantic. J. Geophys. Res., 101, 16683–16694.

    Article  Google Scholar 

  • Wang, J., Chagnon, F. J. F., Williams, E. R., Betts, A. K., Renno, N. O., Machado, L. A. T., Bisht, G., Knox, R., and Bras, R. (2009) Impact of deforestation in the Amazon Basin on

    Google Scholar 

  • cloud climatology. Proceedings of the National Academy of Sciences U.S.A, 106, 3670– 3674.

    Google Scholar 

  • Williams, E., Dall’Antonia, A., Dall’Antonia, V., De Almeida, J., Suarez, F., Liebmann, B., and Malhado, A. (2005) The drought of the century in the Amazon Basin: An analysis of the regional variation of rainfall in South America in 1926. Acta Amazoˆnica, 35, 231–238.

    Article  Google Scholar 

  • Woodward, F. I. and Lomas, M. R. (2004) Vegetation dynamics: Simulating responses to climate change. Biological Reviews, 79, 643–670.

    Article  CAS  Google Scholar 

  • Woodward, F. I., Smith, T. M., and Emanuel, W. R. (1995) A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 9, 471–490.

    Article  CAS  Google Scholar 

  • Zeng, N., Yoon, Y., Marengo, J. A., Subrmanaiam, A., Nobre, C. A., and Mariotti, N. (2008) Causes and impacts of the 2005 Amazon drought. Environmental Research, 3, 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Marengo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Marengo, J.A., Nobre, C.A., Sampaio, G., Salazar, L.F., Borma, L.S. (2011). Climate change in the Amazon Basin: Tipping points, changes in extremes, and impacts on natural and human systems. In: Bush, M., Flenley, J., Gosling, W. (eds) Tropical Rainforest Responses to Climatic Change. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05383-2_9

Download citation

Publish with us

Policies and ethics