Skip to main content

Quantitative Detection of Fungi by Molecular Methods: A Case Study on Fusarium

  • Chapter
  • First Online:
Molecular Identification of Fungi

Abstract

The determination of fungal biomass in diverse samples plays a key role for questions in the fields of plant pathology and agriculture. Until a decade ago, morphological strain determination and quantification by agar-plating methods were the only techniques to quantify fungal infections. These methods were elaborate and time consuming and the obtained results might not always reflect the biological situation. At the end of the 1990s, numerous groups all over the world started with the molecular characterization of the genus Fusarium and defined several diagnostic sequences in the genome of the most prominent Fusarium species as suitable for the discrimination of isolates. Based on these characteristic sequences originally applied for taxonomic studies, quantitative PCR assays were developed from the turn of the millennium until now. PCR tests for certain species were also developed as well as tests for whole groups producing a particular class of toxins. Until now real-time PCR based Fusarium determinations are applied predominantly in niches in agro-biotechnology. However, to further disseminate the inexpensive and rapid quantitative PCR, the quality of analysis has to be guaranteed by defining several standards concerning the PCR procedure from DNA isolation to data analysis. Additionally, plant breeders and agronomists are familiar with toxin analysis and visual rating systems. So change in people’s mind is necessary to realize the benefits of a novel technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch J, Mitchell M, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102(8):1164–1168

    Article  CAS  Google Scholar 

  • Baird et al (2008) Identification of select fumonisin forming Fusarium species using PCR applications of the Polyketide Synthase gene and its relationship to fumonisin production in vitro. Int J Mol Sci 9(4):554–570

    Article  PubMed  CAS  Google Scholar 

  • Bakan B, Giraud-Delville C, Pinson L, Richard-Molard D, Fournier E, Brygoo Y (2002) Identification by PCR of Fusarium culmorum strains producing large and small amounts of deoxynivalenol. Appl Environ Microbiol 68(11):5472–5479

    Article  PubMed  CAS  Google Scholar 

  • Berthiller F, Dall‘Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R (2005) Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by Liquid Chromatography-Tandem Mass Spectrometry. J Agric Food Chem 53:3421–3425

    Article  PubMed  CAS  Google Scholar 

  • Bluhm BH, Cousin MA, Woloshuk CP (2004) Multiplex real-time PCR detection of fumonisin-producing and trichothecene-producing groups of Fusarium species. J Food Prot 67(3):536–543

    PubMed  CAS  Google Scholar 

  • Bezuidenhout CC, Prinsloo M, Van der Walt AM (2006) Multiplex PCR based detection of potential fumonisin-producing Fusarium in traditional African vegetables. Inc Environ Toxicol 21:360–366

    Article  CAS  Google Scholar 

  • Cantalejo MJ, Carrasco JM, Hernandez E (1998) Incidence and distribution of Fusarium species associated with feeds and seeds from Spain. Rev Iberoam Micol 15:36–39

    PubMed  CAS  Google Scholar 

  • Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57(3):595–604

    PubMed  CAS  Google Scholar 

  • Edwards SG, Progozliev SR, Hare MC, Jenkinson P (2001) Quantification of trichothecene producing Fusarium species in harvested grain by competitive PCR to determine efficiacies of fungicides against Fusarium head blight of winter wheat. Appl Environ Microbiol 67(4):1575–1580

    Article  PubMed  CAS  Google Scholar 

  • Fredlund E, Gidlund A, Olsen M, Börjesson T, Spliid NHH, Simonsson M (2008) Method evaluation of Fusarium DNA extraction from mycelia and wheat for down-stream real-time PCR quantification and correlation to mycotoxin levels. J Microbiol Methods 73:33–40

    Article  PubMed  CAS  Google Scholar 

  • Gagkaeva TY, Yli-Mattila T (2004) Genetic diversity of Fusarium graminearum in Europe and Asia. Eur J Plant Pathol 110:551–562

    Article  CAS  Google Scholar 

  • González-Jaén MT, Mirete S, Patiño B, López-Errasquín VC (2004) Genetic markers for the analysis of variability and for production of specific diagnostic sequences in fumonisin-producing strains of Fusarium verticillioides. Eur J Plant Pathol 110:525–532

    Article  Google Scholar 

  • Hussein HM, Baxter M, Andrew IG, Franich RA (1991) Mycotoxin production by Fusarium species isolated from New Zealand maize fields. Mycopathologia 113:506–511

    Article  Google Scholar 

  • Jurado M, Vázquez C, Sanchis V, González-Jaén MT (2006) PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst Appl Microbiol 29:681–689

    Article  PubMed  CAS  Google Scholar 

  • Knutsen AK, Holst-Jensen A (2004) Phylogenetic analyses of the Fusarium poae, Fusarium sporotrichioides and Fusarium langsethiae species complex passed on partial sequences of the translation elongation factor-1 alpha gene. Int J Food Prot 95:287–295

    CAS  Google Scholar 

  • Konstantinova P, Yli-Mattila T (2004) IGS-RFLPanalysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense. Int J Food Microbiol 95:321–331

    Article  PubMed  CAS  Google Scholar 

  • Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Holst-Jensen A (2007) DNA microarray to detect and identify thrichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol 102:1060–1070

    PubMed  CAS  Google Scholar 

  • Krysinska-Traczyk E, Perkowski J, Dutkiewicz J (2007) Levels of fungi and mycotoxins in the samples of grain and grain dust collected from five various cereal crops in eastern Poland. Ann Agric Environ Med 14:159–167

    PubMed  CAS  Google Scholar 

  • Kulik T (2008) Detection of Fusarium tricinctum from cereal grain using PCR assay. J Appl Genet 49(3):305–311

    Article  PubMed  Google Scholar 

  • Láday M, Juhász A, Moretti A, Szécsi A, Logrieco A (2004a) Mitochondrial DNA diversity and lineage determination of European isolates of Fusarium graminearum. Eur J Plant Pathol 110:545–550

    Article  Google Scholar 

  • Láday M, Mulè G, Moretti A, Hamari Z, Juhász A, Szécsi A, Logrieco A (2004b) Mitochondrial DNA variability in Fusarium proliferatum (Gibberella intermedia). Eur J Plant Pathol 110:563–571

    Article  Google Scholar 

  • Lee T, Oh D, Kim H, Lee J, Kim Y, Yun S, Lee Y (2001) Identification of deoxynivalenol and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67(7):2966–2972

    Article  PubMed  CAS  Google Scholar 

  • Li S, Hartman GL, Domier LL, Boykin D (2008) Quantification of Fusarium solani f. sp. glycines isolates in soybean roots by colony-forming unit assays and real-time quantitative PCR. Theor Appl Genet 117:343–352

    Article  PubMed  CAS  Google Scholar 

  • Lipp M, Shillito R, Giroux R, Spiegelhalter F, Charlton S, Pinero D, Song P (2005) Polymerase chain reaction technology as analytical tool in agricultural biotechnology. J AOAC Int 88(1):136–155

    PubMed  CAS  Google Scholar 

  • Mach RL, Kullnig-Gradinger CM, Farnleitner AH, Reischer G, Adler A, Kubicek CP (2004) Specific detection of Fusarium langsethiae and related species by DGGE and ARMS-PCR of a β-tubulin (tub1) gene fragment. Int J Food Prot 95:333–339

    CAS  Google Scholar 

  • Marcia McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81(12):1340–1348

    Article  Google Scholar 

  • Medianer T (2006) Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed 116(3):201–220

    Article  Google Scholar 

  • Mirete S, Vazquez C, Moulè G, Jurado M, Gonzáles-Jaén MT (2004) Differentiation of Fusarium verticillioides from banana fruits by IGS and EF-1α sequence analysis. Eur J Plant Pathol 110:525–523

    Article  Google Scholar 

  • Mishra PK, Fox RTV, Culham A (2003) Development of a PCR-based assay for rapid and reliable identication of pathogenic Fusaria. FEMS Microbiol Lett 218:329–332

    Article  PubMed  CAS  Google Scholar 

  • Mulfinger S, Niessen L,Vogel RF (2000) PCR based quality control of toxigenic Fusarium spp. in brewing malt using ultrasonication for rapid sample preparation. Adv Food Sci 22:38–46

    CAS  Google Scholar 

  • Mulè G, Susca A, Stea G, Moretti A (2004) A species specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. roliferatum and F. subglutinans. Eur J Plant Pathol 110:495–502

    Article  Google Scholar 

  • Nganje WA, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM (2004) Regional economic impacts of Fusarium head blight in wheat and barley. Rev Agr Econ 26(3):332–337

    Article  Google Scholar 

  • Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW, Joyce D (1998) Phys Mol Plant Pathol 53:17–37

    Article  CAS  Google Scholar 

  • Nicholson P, Simpson DR, Wilson AH, Chandler E, Thomsett A (2004) Detection and differentiation of trichothecene and enniatin-producing Fusarium species on small-grain cereals. Eur J Plant Pathol 110:503–514

    Article  CAS  Google Scholar 

  • Nicolaisen M, Justesen AF, Thrane U, Skouboe P, Holmstrom K (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene-producing and non-producing Fusarium species occurring on cereal grain. J Microbiol Meth 62:57–69

    Article  CAS  Google Scholar 

  • Niessen ML, Vogel RF (1998) Group specific PCR-detection of potential trichothecene-producing Fusarium-species in pure cultures and cereal samples. Syst Appl Microbiol 21(4):618–631

    Article  PubMed  CAS  Google Scholar 

  • Proctor RH, Desjardins AE, Plattner RD, Hohn TM (1999) A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112

    Article  PubMed  CAS  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  PubMed  CAS  Google Scholar 

  • Reischer GH, Lemmens M, Farnleitner AH, Adler A, Mach RL (2004) Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan probe. J Microbiol Meth 59:141–146

    Article  CAS  Google Scholar 

  • Robertson-Hoyt LA, Jines MP, Balint-Kurti PJ, Kleinschmidt CE, White DE, Payne GA, Maragos CM, Molnár TL, Holland JB (2006) QTL mapping for Fusarium Ear rot and Fumonisin contamination resistance in two maize populations. Crop Sci 46:1734–1743

    Article  CAS  Google Scholar 

  • Petcu G, Ioni蝚ã S (1998) Influence of crop rotation on weed infestion and Fusarium spp. attack, yield and quality of winter wheat. Rom Agric Res 9–10:83–91

    Google Scholar 

  • Reid LM, Zhu X, Ma BL (2001) Crop rotation and nitrogen effects on maize susceptibility to Gibberella (Fusarium graminearum) ear rot. Plant Soil 237(1):1–14

    Article  CAS  Google Scholar 

  • Schnerr H, Niessen L, Vogel RF (2001) Real-time detection of the tri5 gene in Fusarium by LightCycler-PCR using SYBR Green I for continous fluorescence monitoring. Int J Food Microbiol 71:53–61

    Article  PubMed  CAS  Google Scholar 

  • Schnerr H, Vogel RF, Niessen L (2002) Correlation between DNA of trichothecene-producing Fusarium species and deoxynivalenol concentrations in wheat samples. Letters Appl Microbiol 35:121–125

    Article  CAS  Google Scholar 

  • Steinkellner S, Langer I (2004) Impact of tillage on the incidence of Fusarium spp. in soil. Plant Soil 267(1–2):13–22

    Article  CAS  Google Scholar 

  • Strausbaugh CA, Overturf K, Koehn AC (2005) Pathogenicity and real-time PCR detection of Fusarium spp. in wheat and barley roots. Can J Plant Pathol 27:430–438

    Article  CAS  Google Scholar 

  • Waalwijk C, de Kastelein P, Fries PM, Kerenyi Z, van der Lee TAJ, Hesselink T, Köhl J, Kema GHJ (2003) Major changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754

    Article  CAS  Google Scholar 

  • Waalwijk C, van der Heide R, de Vries I, van der Lee T, Schoen C, Corainville GC, Häusler-Hahn I, Kastelein P, Köhl J, Lonnet P, Demarquet T, Kema GHJ (2004) Quantitative detection of Fusarium in wheat using TaqMan. Eur J Plant Pathol 110:481–494

    Article  CAS  Google Scholar 

  • Waalwijk C, Koch SH, Ncube E, Allwood J, Flett B, de Vries I, Kema GHJ (2008) Quantitative detection of Fusarium spp and its correlation with fumonisin content in maize from South African subsistence farmers. World Mycotox J 1(1):39–47

    Article  CAS  Google Scholar 

  • Weiland JJ, Sundsbak JL (2000) Differentiation and detection of sugar beet fungal pathogens using PCR amplification of actin coding sequences and the ITS region oft he rRNA gene. Plant Dis 84(4):475–482

    Article  CAS  Google Scholar 

  • Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90(1):17–21

    Article  PubMed  CAS  Google Scholar 

  • Yli-Mattila T, Mach RL, Alekhina IA, Bulat SA, Koskinen S, Kullnig-Gradinger CM, Kubicek CP, Klemsdal SS (2004a) Phylogenetic relationship of Fusarium langsethiae to Fusarium poae and Fusarium sporotrichioides as inferred by IGS, ITS, β-tubulin sequences and UP-PCR analysis. Int J Food Microbiol 95:267–285

    Article  PubMed  CAS  Google Scholar 

  • Yli-Mattila T, Paavanen-Huhtala S, Konstantinova P, Gagkaeva TY (2004b) Molecular and morphological diversity of Fusarium species in Finland and north-western Russia. Eur J Plant Pathol 110:573–585

    Article  CAS  Google Scholar 

  • Yli-Mattila T, Paavanen-Huhtala S, Jestoi M, Parikka P, Hietanieme V, Gagkaeva T, Sarlin T, Haikara A, Laaksonen S, Rizzo A (2008) Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch Phytopathol Plant Prot 41(4):243–260

    Article  CAS  Google Scholar 

  • Youssef SA, Maymon M, Zveibil A, Klein-Gueta D, Sztejnberg A, Shalaby AA, Freeman S (2007) Epidemiological aspects of mango malformation disease caused by Fusarium mangiferae and source of infection in seedlings cultivated in orchards in Egypt. Plant Pathol 56:257–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present article was generated in the course of a Fusarium research project financed by the Austrian Federal Ministry of Agriculture, Forestry, Environment, and Water Management, project code FP100053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Mach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brunner, K., Mach, R.L. (2010). Quantitative Detection of Fungi by Molecular Methods: A Case Study on Fusarium . In: Gherbawy, Y., Voigt, K. (eds) Molecular Identification of Fungi. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05042-8_5

Download citation

Publish with us

Policies and ethics