Skip to main content

Supramolecular Nanostructures of Phthalocyanines and Porphyrins at Surfaces Based on the “Bottom-Up Assembly”

  • Chapter
  • First Online:
Functional Phthalocyanine Molecular Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 135))

Abstract

The “bottom-up” strategy is an attractive and promising approach for the construction of nanoarchitectures. Supramolecular assemblies based on noncovalent interactions have been explored in an attempt to control the surface properties. In this chapter, we focus on advances made in the past 5 years in the field of scanning tunneling microscopy (STM) on supramolecularly nanostructured phthalocyanines and porphyrins on single-crystal surfaces. The design of supramolecular nanoarchitectures consisting of phthalocyanines and porphyrins, supramolecular traps of C60 and coannulene, direct metallation on phthalocyanines and porphyrins adlayers, direct synthesis of porphyrin oligomers at surfaces, axial coordination of phthalocyanines and porphyrins, and nanoapplications induced by tip manipulation at surfaces were clearly visualized by STM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li G, Fudickar W, Skupin M, Klyszcz A, Draeger C, Lauer M, Fuhrhop JH (2002) Angew Chem Int Ed 41:1828

    Google Scholar 

  2. Lehn JM (1995) Supramolecular chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  3. Choi IS, Bowden N, Whitesides GM (1999) Angew Chem Int Ed 38:3078

    Google Scholar 

  4. Ruben M, Rojo J, Romero-Salguero FJ, Uppadine LH, Lehn JM (2004) Angew Chem Int Ed 43:3644

    Google Scholar 

  5. Lehn JM (2007) Chem Soc Rev 36:151

    Google Scholar 

  6. van Hameren R, Schön P, van Buul AM, Hoogboom J, Lazarenko SV, Gerritsen JW, Engelkamp H, Christianen PCM, Heus HA, Maan JC, Rasing T, Speller S, Rowan AE, Elemans JAAW, Nolte RJM (2006) Science 314:1433

    Google Scholar 

  7. Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T (2004) Science 304:1481

    Google Scholar 

  8. Barth JV, Costantini G, Kern K (2005) Nature 437:671–679

    Google Scholar 

  9. Yoshimoto S, Itaya K (2007) J Porphyrins Phthalocyanines 11:313

    Google Scholar 

  10. De Feyter S, De Schryver FC (2003) Chem Soc Rev 32:139

    Google Scholar 

  11. Gewirth AA, Niece BK (1997) Chem Rev 97:1129

    Google Scholar 

  12. Itaya K (1998) Prog Surf Sci 58:121

    Google Scholar 

  13. Itaya K (2006) Electrochemistry 74:19

    Google Scholar 

  14. Wieckowski A (1999) Interfacial Electrochemistry. Marcel Dekker, New York

    Google Scholar 

  15. Kolb DM (2001) Angew Chem Int Ed 40:1162

    Google Scholar 

  16. Magnussen OM (2002) Chem Rev 102:672

    Google Scholar 

  17. De Feyter S, De Schryver FC (2005) J Phys Chem B 109:4290

    Google Scholar 

  18. Yoshimoto S (2006) Bull Chem Soc Jpn 79:1167

    Google Scholar 

  19. Wang D, Wan LJ (2007) J Phys Chem C 111:16109

    Google Scholar 

  20. Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Phys Rev Lett 49:57

    Google Scholar 

  21. Sonnenfeld R, Hansma PK (1986) Science 232:211

    Google Scholar 

  22. Itaya K, Tomita E (1988) Surf Sci 201:L507

    Google Scholar 

  23. Mamdouh W, Ujii H, Dulcey AE, Percec V, De Feyter S, De Schryver FC (2004) Langmuir 20:7678

    Google Scholar 

  24. Lackinger M, Griessl S, Heckl WM, Hietschold M, Flynn GW (2005) Langmuir 21:4984

    Google Scholar 

  25. Gyarfas BJ, Wiggins B, Zosel M, Hipps KW (2005) Langmuir 21:919

    Google Scholar 

  26. Ikeda T, Asakawa M, Miyake K, Shimizu T (2004) Chem Lett 33:1418

    Google Scholar 

  27. Lippel PH, Wilson RJ, Miller MD, Wöll C, Chiang S (1989) Phys Rev Lett 62:171

    Google Scholar 

  28. Jung TA, Schlittler RR, Gimzewski JK, Tang H, Joachim C (1996) Science 271:181

    Google Scholar 

  29. Jung TA, Schlittler RR, Gimzewski JK (1997) Nature 386:696

    Google Scholar 

  30. Lu X, Hipps KW, Wang XD, Mazur U (1996) J Am Chem Soc 118:7197

    Google Scholar 

  31. Hipps KW, Lu X, Wang XD, Mazur U (1996) J Phys Chem 100:11207

    Google Scholar 

  32. Lu X, Hipps KW (1997) J Phys Chem B 101:5391

    Google Scholar 

  33. Barlow DE, Hipps KW (2000) J Phys Chem B 104:5993

    Google Scholar 

  34. Scudiero L, Barlow DE, Hipps KW (2000) J Phys Chem B 104:11899

    Google Scholar 

  35. Scudiero L, Barlow DE, Mazur U, Hipps KW (2001) J Am Chem Soc 123:4073

    Google Scholar 

  36. Cheng ZH, Gao L, Deng ZT, Liu Q, Jiang N, Lin X, He XB, Du SX, Gao HJ (2007) J Phys Chem C 111:2656

    Google Scholar 

  37. Cheng ZH, Gao L, Deng ZT, Jiang N, Liu Q, Shi DX, Du SX, Guo HM, Gao HJ (2007) J Phys Chem C 111:9240

    Google Scholar 

  38. Kröger J, Jensen H, Néel N, Berndt R (2007) Surf Sci 601:4180

    Google Scholar 

  39. Néel N, Kröger J, Berndt R (2006) Adv Mater 18:174

    Google Scholar 

  40. Canas-Ventura ME, Xiao W, Wasserfallen D, Müllen K, Brune H, Barth JV, Fasel R (2007) Angew Chem Int Ed 46:1814

    Google Scholar 

  41. Ruiz-Osés M, González-Lakunza N, Silanes I, Gourdon A, Arnau A, Ortega JE (2006) J Phys Chem B 110:25573

    Google Scholar 

  42. Nilson K, Palmgren P, Åhlund J, Schiessling J, Göthelid E, Mårtensson N, Puglia C, Göthelid M (2008) Surf Sci 602:452

    Google Scholar 

  43. Wei Y, Robey SW, Reutt-Robey JE (2008) J Phys Chem C 112:18537

    Google Scholar 

  44. Sugimasa M, Inukai J, Itaya K (2003) J Electrochem Soc 150:E110

    Google Scholar 

  45. Wang YF, Kröger J, Berndt R, Hofer W (2009) Angew Chem Int Ed 48:1261

    Google Scholar 

  46. Samuely T, Liu SX, Wintjes N, Haas M, Decurtins S, Jung TA, Stöhr M (2008) J Phys Chem C 112:6139

    Google Scholar 

  47. Mazur U, Hipps KW, Riechers SL (2008) J Phys Chem C 112:20347

    Google Scholar 

  48. Kunitake M, Batina N, Itaya K (1995) Langmuir 11:2337

    Google Scholar 

  49. Batina N, Kunitake M, Itaya K (1996) J Electroanal Chem 405:245

    Google Scholar 

  50. Kunitake M, Akiba U, Batina N, Itaya K (1997) Langmuir 13:1607

    Google Scholar 

  51. Ogaki K, Batina N, Kunitake M, Itaya K (1996) J Phys Chem 100:7185

    Google Scholar 

  52. Sashikata K, Sugata T, Sugimasa M, Itaya K (1998) Langmuir 14:2896

    Google Scholar 

  53. Hai NTM, Gasparovic B, Wandelt K, Broekmann P (2007) Surf Sci 601:2597

    Google Scholar 

  54. Wan LJ, Shundo S, Inukai J, Itaya K (2000) Langmuir 16:2164

    Google Scholar 

  55. Safarowsky C, Wandelt K, Broekmann P (2004) Langmuir 20:8261

    Google Scholar 

  56. Safarowsky C, Merz L, Rang A, Broekmann P, Hermann BA, Schalley CA (2004) Angew Chem Int Ed 43:1291

    Google Scholar 

  57. Sakaguchi H, Matsumura H, Gong H (2004) Nat Mater 3:551

    Google Scholar 

  58. Han WH, Durantini EN, Moore TA, Moore AL, Gust D, Rez P, Leatherman G, Seely GR, Tao N-J, Lindsay SM (1997) J Phys Chem B 101:10719

    Google Scholar 

  59. He Y, Borguet E (2007) Angew Chem Int Ed 46:6098

    Google Scholar 

  60. He Y, Ye T, Borguet E (2002) J Am Chem Soc 124:11964

    Google Scholar 

  61. Ye T, He Y, Borguet E (2006) J Phys Chem B 110:6141

    Google Scholar 

  62. Tao NJ, Cardenas G, Cunha F, Shi Z (1995) Langmuir 11:4445

    Google Scholar 

  63. Tao NJ (1996) Phys Rev Lett 76:4066

    Google Scholar 

  64. Hai NTM, Wandelt K, Broekmann P (2008) J Phys Chem C 112:10176

    Google Scholar 

  65. Yoshimoto S, Sawaguchi T (2008) J Am Chem Soc 130:15944

    Google Scholar 

  66. Yoshimoto S, Inukai J, Tada A, Abe T, Morimoto T, Osuka A, Furuta H, Itaya K (2004) J Phys Chem B 108:1948

    Google Scholar 

  67. Yoshimoto S, Tada A, Suto K, Narita R, Itaya K (2003) Langmuir 19:672

    Google Scholar 

  68. Yoshimoto S, Sato K, Sugawara S, Chen Y, Ito O, Sawaguchi T, Niwa O, Itaya K (2007) Langmuir 23:809

    Google Scholar 

  69. Yoshimoto S, Tada A, Suto K, Itaya K (2003) J Phys Chem B 107:5836

    Google Scholar 

  70. Scudiero L, Barlow DE, Hipps KW (2002) J Phys Chem B 106:996

    Google Scholar 

  71. Yoshimoto S, Suto K, Itaya K, Kobayashi N (2003) Chem Commun:2174

    Google Scholar 

  72. Yoshimoto S, Suto K, Tada A, Kobayashi N, Itaya K (2004) J Am Chem Soc 126:8020

    Google Scholar 

  73. Yoshimoto S, Tsutsumi E, Suto K, Honda Y, Itaya K (2005) Chem Phys 319:147

    Google Scholar 

  74. Yoshimoto S, Tsutsumi E, Honda Y, Ito O, Itaya K (2004) Chem Lett 33:914

    Google Scholar 

  75. Yoshimoto S, Sugawara S, Itaya K (2006) Electrochemistry 74:17578

    Google Scholar 

  76. Lei SB, Wang C, Yin SX, Wang HN, Wi F, Liu HW, Xu B, Wan LJ, Bai CL (2001) J Phys Chem B 105:10838

    Google Scholar 

  77. Otsuki J, Nagamine E, Kondo T, Iwasaki K, Asakawa M, Miyake K (2005) J Am Chem Soc 127:10400

    Google Scholar 

  78. Hill JP, Wakayama Y, Akada M, Ariga K (2007) J Phys Chem C 111:16174

    Google Scholar 

  79. Yokoyama T, Yokoyama S, Kamikado T, Okuno Y, Mashiko S (2001) Nature 413:619

    Google Scholar 

  80. Yokoyama T, Kamikado T, Yokoyama S, Mashiko S (2004) J Chem Phys 121:11993

    Google Scholar 

  81. Yoshimoto S, Yokoo N, Fukuda T, Kobayashi N, Itaya K (2006) Chem Commun:500

    Google Scholar 

  82. Hipps KW, Scudiero L, Barlow DE, Cooke Jr MP (2002) J Am Chem Soc 124:2126

    Google Scholar 

  83. Scudiero L, Hipps KW, Barlow DE (2003) J Phys Chem B 107:2903

    Google Scholar 

  84. Barlow DE, Scudiero L, Hipps KW (2004) Langmuir 20:4413

    Google Scholar 

  85. Suto K, Yoshimoto S, Itaya K (2003) J Am Chem Soc 125:14976

    Google Scholar 

  86. Suto K, Yoshimoto S, Itaya K (2006) Langmuir 22:10766

    Google Scholar 

  87. Yoshimoto S, Higa N, Itaya K (2004) J Am Chem Soc 126:8540

    Google Scholar 

  88. Barrena E, de Oteyza DG, Dosch H, Wakayama Y (2007) ChemPhysChem 8:1915

    Google Scholar 

  89. de Wild M, Berner S, Suzuki H, Yanagi H, Schlettwein D, Ivan S, Baratoff A, Güentherodt HJ, Jung TA (2002) ChemPhysChem 3:881

    Google Scholar 

  90. Calmettes B, Nagarajan S, Gourdon A, Abel M, Porte L, Coratger R (2008) Angew Chem Int Ed 47:6994

    Google Scholar 

  91. Kong XH, Deng K, Yang YL, Zeng QD, Wang C (2007) J Phys Chem C 111:9235

    Google Scholar 

  92. Kong XH, Yang YL, Lei SB, Wang C (2008) Surf Sci 602:684

    Google Scholar 

  93. Yang ZY, Lei SB, Gan LH, Wan LJ, Wang C, Bai CL (2005) ChemPhysChem 6:65

    Google Scholar 

  94. Lu J, Lei SB, Zeng QD, Kang SZ, Wang C, Wan LJ, Bai CL (2004) J Phys Chem B 108:5161

    Google Scholar 

  95. Ishii T, Aizawa N, Kanehama R, Yamashita M, Sugiura Ki, Miyasaka H (2002) Coord Chem Rev 226:113

    Google Scholar 

  96. Boyd PDW, Reed CA (2005) Acc Chem Res 38:235

    Google Scholar 

  97. Stöhr M, Wagner T, Gabriel M, Weyers B, Möller R (2001) Adv Funct Mater 11:175

    Google Scholar 

  98. Yoshimoto S, Tsutsumi E, Honda Y, Murata Y, Murata M, Komatsu K, Ito O, Itaya K (2004) Angew Chem Int Ed 43:3044

    Google Scholar 

  99. Yoshimoto S, Honda Y, Murata Y, Murata M, Komatsu K, Ito O, Itaya K (2005) J Phys Chem B 109:8547

    Google Scholar 

  100. Yoshimoto S, Saito A, Tsutsumi E, D’Souza F, Ito O, Itaya K (2004) Langmuir 20:11046

    Google Scholar 

  101. Yoshimoto S, Honda Y, Ito O, Itaya K (2008) J Am Chem Soc 130:1085

    Google Scholar 

  102. Yoshimoto S, Tsutsumi E, Fujii O, Narita R, Itaya K (2005) Chem Commun:1188

    Google Scholar 

  103. Yoshimoto S, Tsutsumi E, Narita R, Fujiwara K, Murata M, Murata Y, Komatsu K, Ito O, Itaya K (2007) J Am Chem Soc 129:4366

    Google Scholar 

  104. Nishiyama F, Yokoyama T, Kamikado T, Yokoyama S, Mashiko S, Sakaguchi K, Kikuchi K (2007) Adv Mater 19:117

    Google Scholar 

  105. Bonifazi D, Spillmann H, Kiebele A, de Wild M, Seiler P, Cheng F, Jung T, Diederich F (2004) Angew Chem Int Ed 43:4759

    Google Scholar 

  106. Li WS, Kim KS, Jiang DL, Tanaka H, Kawai T, Kwon JH, Kim D, Aida T (2006) J Am Chem Soc 128:10527

    Google Scholar 

  107. Bottari G, Olea D, Gómez-Navarro C, Zamora F, Gómez-Herrero J, Torres T (2008) Angew Chem Int Ed 47:2026

    Google Scholar 

  108. Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Nature 424:1029

    Google Scholar 

  109. Perdigão LMA, Perkins EW, Ma J, Staniec PA, Rogers BL, Champness NR, Beton PH (2006) J Phys Chem B 110:12539

    Google Scholar 

  110. Saywell A, Magnano G, Satterley CJ, Perdigão LMA, Champness NR, Beton PH, O’Shea JN (2008) J Phys Chem C 112:7706

    Google Scholar 

  111. Madueno R, Räisänen MT, Silien C, Buck M (2008) Nature 454:618

    Google Scholar 

  112. Wahl M, Stöhr M, Spillmann H, Jung TA, Gade LH (2007) Chem Commun:1349

    Google Scholar 

  113. Gottfried JM, Flechtner K, Kretschmann A, Lukasczyk T, Steinrück HP (2006) J Am Chem Soc 128:5644

    Google Scholar 

  114. Kretschmann A, Walz MM, Flechtner K, Steinrück HP, Gottfried JM (2007) Chem Commun:568

    Google Scholar 

  115. Auwärter W, Weber-Bargioni A, Brink S, Riemann A, Schiffrin A, Ruben M, Barth JV (2007) ChemPhysChem 8:250

    Google Scholar 

  116. Buchner F, Schwald V, Comanici K, Steinrück HP, Marbach H (2007) ChemPhysChem 8:241

    Google Scholar 

  117. Buchner F, Flechtner K, Bai Y, Zillne, E, Kellner I, Steinrück HP, Marbach H, Gottfried JM (2008) J Phys Chem C 112:15458

    Google Scholar 

  118. Lukasczyk T, Flechtner K, Merte LR, Jux N, Maier F, Gottfried JM, Steinrück HP (2007) J Phys Chem C 111:3090

    Google Scholar 

  119. Comanici K, Buchner F, Flechtner K, Lukasczyk T, Gottfried JM, Steinrück HP, Marbach H (2008) Langmuir 24:1897

    Google Scholar 

  120. Weber-Bargioni A, Reichert J, Seitsonen AP, Auwärter W, Schiffrin A, Barth JV (2008) J Phys Chem C 112:3453

    Google Scholar 

  121. Écija D, Trelka M, Urban C, Mendoza P, Mateo-Martí E, Rogero C, Martín-Gago JA, Echavarren AM, Otero R, Gallego JM, Miranda R (2008) J Phys Chem C 112:8988

    Google Scholar 

  122. Bai Y, Buchner F, Wendahl MT, Kellner I, Bayer A, Steinrück HP, Marbach H, Gottfried JM (2008) J Phys Chem C 112:6087

    Google Scholar 

  123. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nature Nanotechnol 2:687

    Google Scholar 

  124. In’t Veld M, Iavicoli P, Haq S, Amabilino DB, Raval R (2008) Chem Commun:1536

    Google Scholar 

  125. Spillmann H, Dmitriev A, Lin N, Messina P, Barth JV, Kern K (2003) J Am Chem Soc 125:10725

    Google Scholar 

  126. Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin N, Deng X, Cai C, Barth JV, Kern K (2004) Nature Mater 3:229

    Google Scholar 

  127. Stepanow S, Lin N, Barth JV (2008) J Phys:Condens Matter 20:184002

    Google Scholar 

  128. Eichberger M, Marschall M, Reichert J, Weber-Bargioni A, Auwärter W, Wang RLC, Kreuzer HJ, Pennec Y, Schiffrin A, Barth JV (2008) Nano Lett 8:4608

    Google Scholar 

  129. Auwärter W, Klappenberger F, Weber-Bargioni A, Schiffrin A, Strunskus T, Wöll C, Pennec Y, Riemann A, Barth JV (2007) J Am Chem Soc 129:11279

    Google Scholar 

  130. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    Google Scholar 

  131. Hunter CA, Mesh MN, Sanders JKM (1990) J Am Chem Soc 112:5773

    Google Scholar 

  132. Anderson HL, Hunter CA, Mesh MN, Sanders JKM (1990) J Am Chem Soc 112:5780

    Google Scholar 

  133. Fujita M, Tominaga M, Hori A, Therrien B (2005) Acc Chem Res 38:371

    Google Scholar 

  134. Claessens CG, Vicente-Aranab MJ, Torres T (2008) Chem Commun:6378

    Google Scholar 

  135. Kitagawa S, Noro S, Nakamura T (2006) Chem Commun:701

    Google Scholar 

  136. Bar AK, Chakrabarty R, Mostafa G, Mukherjee PS (2008) Angew Chem Int Ed 47:8455

    Google Scholar 

  137. Hosseini MW (2005) Chem Commun:5825

    Google Scholar 

  138. Deiters E, Bulach V, Hosseini MW (2005) Chem Commun:3906

    Google Scholar 

  139. Kühn E, Bulach V, Hosseini MW (2008) Chem Commun:5104

    Google Scholar 

  140. van Gerven PCM, Elemans JAAW, Gerritsen JW, Speller S, Nolte RJM, Rowan AE (2005) Chem Commun:3535

    Google Scholar 

  141. Elemans JAAW, Lensen MC, Gerritsen JW, Kerpen H, Speller S, Nolte RJM, Rowan AE (2003) Adv Mater 15:2070

    Google Scholar 

  142. Lensen MC, Takazawa K, Elemans JAAW, Jeukens CRLPN, Christianen PCM, Maan JC, Rowan AE, Nolte RJM (2004) Chem Eur J 10:831

    Google Scholar 

  143. Lensen MC, van Dingenen SJT, Elemans JAAW, Dijkstra HP, van Klink GPM, van Koten G, Gerritsen JW, Speller S, Nolte RJM, Rowan AE (2004) Chem Commun:762

    Google Scholar 

  144. Bhosale SV, Bissett MA, Forsyth C, Langford SJ, Neville SM, Shapter JG, Weeks L, Woodward CP (2008) Org Lett 10:2943

    Google Scholar 

  145. Williams FJ, Vaughan OPH, Knox KJ, Bampos N, Lambert RM (2004) Chem Commun:1688

    Google Scholar 

  146. Shoji O, Okada S, Satake A, Kobuke Y (2005) J Am Chem Soc 127:2201

    Google Scholar 

  147. Shoji O, Tanaka H, Kawai T, Kobuke Y (2005) J Am Chem Soc 127:8598

    Google Scholar 

  148. Ikeda T, Asakawa M, Goto M, Miyake K, Ishida T, Shimizu T (2004) Langmuir 20:5454

    Google Scholar 

  149. Yang ZY, Gan LH, Lei SB, Wan LJ, Wang C, Jiang JZ (2005) J Phys Chem B 109:19859

    Google Scholar 

  150. Klymchenko AS, Sleven J, Binnemans K, De Feyter S (2006) Langmuir 22:723

    Google Scholar 

  151. Takami T, Arnold DP, Fuchs AV, Will GD, Goh R, Waclawik ER, Bell JM, Weiss PS, Sugiura Ki, Liu W, Jiang JZ (2006) J Phys Chem B 110:1661

    Google Scholar 

  152. Ye T, Takami T, Wang R, Jiang JZ, Weiss PS (2006) J Am Chem Soc 128:10984

    Google Scholar 

  153. Takami T, Ye T, Arnold DP, Sugiura Ki, Wang R, Jiang JZ, Weiss PS (2007) J Phys Chem C 111:2077

    Google Scholar 

  154. Otsuki J, Kawaguchi S, Yamakawa T, Asakawa M, Miyake K (2006) Langmuir 22:5708

    Google Scholar 

  155. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281

    Google Scholar 

  156. Liu Z, Yasseri AA, Lindsey JS, Bocian DF (2003) Science 302:1543

    Google Scholar 

  157. Takeuchi M, Imada T, Shinkai S (1998) Angew Chem Int Ed 37:2096

    Google Scholar 

  158. Sugasaki A, Ikeda M, Takeuchi M, Shinkai S (2000) Angew Chem Int Ed 39:3839

    Google Scholar 

  159. Shinkai S, Ikeda M, Sugasaki A, Takeuchi M (2001) Acc Chem Res 34:494

    Google Scholar 

  160. Tashiro K, Konishi K, Aida T (2000) J Am Chem Soc 122:7921

    Google Scholar 

  161. Yoshimoto S, Sawaguchi T, Su W, Jiang JZ, Kobayashi N (2007) Angew Chem Int Ed 46:1071

    Google Scholar 

  162. Vitali L, Fabris S, Conte AM, Brink S, Ruben M, Baroni S, Kern K (2008) Nano Lett 8:3364

    Google Scholar 

  163. Spillmann H, Kiebele A, Stöhr M, Jung TA, Bonifazi D, Cheng FY, Diederich F (2006) Adv Mater 18:275

    Google Scholar 

  164. Kiebele A, Bonifazi D, Cheng F, Stöhr M, Diederich F, Jung T, Spillmann H (2006) ChemPhysChem 7:1462

    Google Scholar 

  165. Wintjes N, Bonifazi D, Cheng F, Kiebele A, Stöhr M, Jung T, Spillmann H, Diederich F (2007) Angew Chem Int Ed 46:4089

    Google Scholar 

  166. Meier C, Landfester K, Künzel D, Markert T, Groß A, Ziener U (2008) Angew Chem Int Ed 47:3821

    Google Scholar 

  167. Wang Y, Kröger J, Berndt R, Hofer WA (2009) J Am Chem Soc 131:3639

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the JST program “Special Coordination Funds for Promoting Science and Technology” (S.Y.) and by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 20108007, “π-Space”) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichiro Yoshimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshimoto, S., Kobayashi, N. (2010). Supramolecular Nanostructures of Phthalocyanines and Porphyrins at Surfaces Based on the “Bottom-Up Assembly”. In: Jiang, J. (eds) Functional Phthalocyanine Molecular Materials. Structure and Bonding, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04752-7_5

Download citation

Publish with us

Policies and ethics