Skip to main content

Parking Functions, Labeled Trees and DCJ Sorting Scenarios

  • Conference paper
Comparative Genomics (RECOMB-CG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5817))

Included in the following conference series:

Abstract

In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios, and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios of co-tailed genomes. We also construct effective bijections between the set of scenarios that sort a cycle and well studied combinatorial objects such as parking functions and labeled trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajana, Y., Lefebvre, J.-F., Tillier, E.R.M., El-Mabrouk, N.: Exploring the set of all minimal sequences of reversals - an application to test the replication-directed reversal hypothesis. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, p. 300. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Barcucci, E., del Lungo, A., Pergola, E.: Random generation of trees and other combinatorial objects. Theoretical Computer Science 218(2), 219–232 (1999)

    Article  Google Scholar 

  3. Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not always difficult. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(1), 4–16 (2007)

    Article  PubMed  Google Scholar 

  4. Bergeron, A., Chauve, C., Hartman, T., St-onge, K.: On the properties of sequences of reversals that sort a signed permutation. In: Proceedings Troisièmes Journées Ouvertes Biologie Informatique Mathématiques, pp. 99–108 (2002)

    Google Scholar 

  5. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Braga, M.D.V., Sagot, M.-F., Scornavacca, C., Tannier, E.: Exploring the solution space of sorting by reversals, with experiments and an application to evolution. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(3), 348–356 (2008)

    Article  PubMed  Google Scholar 

  7. Diekmann, Y., Sagot, M.-F., Tannier, E.: Evolution under reversals: Parsimony and conservation of common intervals. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(2), 301–309 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Kalikow, L.H.: Enumeration of parking functions, allowable permutation pairs, and labeled trees. PhD thesis, Brandeis University (1999)

    Google Scholar 

  9. Konheim, A.G., Weiss, B.: An occupancy discipline and applications. SIAM Journal of Applied Mathematics 14, 1266–1274 (1966)

    Article  Google Scholar 

  10. McLysaght, A., Seoighe, C., Wolfe, K.H.: High frequency of inversions during eukaryote gene order evolution. In: Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, pp. 47–58. Kluwer Academic Press, Dordrecht (2000)

    Chapter  Google Scholar 

  11. Miklós, I., Darling, A.: Efficient sampling of parsimonious inversion histories with application to genome rearrangement in yersinia. Genome Biology and Evolution 1(1), 153–164 (2009)

    PubMed  PubMed Central  Google Scholar 

  12. Miklós, I., Hein, J.: Genome rearrangement in mitochondria and its computational biology. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 85–96. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Ozery-flato, M., Shamir, R.: Sorting by translocations via reversals theory. Journal of Computational Biology 14(4), 408–422 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of National Academy of Sciences USA 100(13), 7672–7677 (2003)

    Article  CAS  Google Scholar 

  15. Sankoff, D., Lefebvre, J.-F., Tillier, E.R.M., Maler, A., El-Mabrouk, N.: The distribution of inversion lengths in bacteria. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 97–108. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Sankoff, D., Trinh, P.: Chromosomal breakpoint reuse in genome sequence rearrangement. Journal of Computational Biology 12(6), 812–821 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Siepel, A.C.: An algorithm to enumerate all sorting reversals. In: RECOMB 2002: Proceedings of the Sixth annual International Conference on Computational biology, pp. 281–290. ACM, New York (2002)

    Chapter  Google Scholar 

  18. Stanley, R.P.: Enumerative Combinatorics, vol. I. Wadsworth and Brookes/Cole, Monterey, California (1986)

    Book  Google Scholar 

  19. Stanley, R.P.: Parking functions and noncrossing partitions. Electronic Journal of Combinatorics 4(2), R20 (1997)

    Google Scholar 

  20. Stanley, R.P.: Enumerative Combinatorics, vol. II. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  21. Swenson, K.M., Dong, Y., Tang, J., Moret, B.M.E.: Maximum independent sets of commuting and noninterfering inversions. In: 7th Asia-Pacific Bioinformatics Conference ( to appear, 2009)

    Google Scholar 

  22. Xu, A.W., Zheng, C., Sankoff, D.: Paths and cycles in breakpoint graphs of random multichromosomal genomes. Journal of Computational Biology 14(4), 423–435 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ouangraoua, A., Bergeron, A. (2009). Parking Functions, Labeled Trees and DCJ Sorting Scenarios. In: Ciccarelli, F.D., Miklós, I. (eds) Comparative Genomics. RECOMB-CG 2009. Lecture Notes in Computer Science(), vol 5817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04744-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04744-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04743-5

  • Online ISBN: 978-3-642-04744-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics