Skip to main content

Consensus and Mutual Exclusion in a Multiple Access Channel

  • Conference paper
Distributed Computing (DISC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5805))

Included in the following conference series:

Abstract

We consider deterministic feasibility and time complexity of two fundamental tasks in distributed computing: consensus and mutual exclusion. Processes have different labels and communicate through a multiple access channel. The adversary wakes up some processes in possibly different rounds. In any round every awake process either listens or transmits. The message of a process i is heard by all other awake processes, if i is the only process to transmit in a given round. If more than one process transmits simultaneously, there is a collision and no message is heard. We consider three characteristics that may or may not exist in the channel: collision detection (listening processes can distinguish collision from silence), the availablity of a global clock showing the round number, and the knowledge of the number n of all processes.

If none of the above three characteristics is available in the channel, we prove that consensus and mutual exclusion are infeasible; if at least one of them is available, both tasks are feasible and we study their time complexity. Collision detection is shown to cause an exponential gap in complexity: if it is available, both tasks can be performed in time logarithmic in n, which is optimal, and without collision detection both tasks require linear time. We then investigate both consensus and mutual exclusion in the absence of collision detection, but under alternative presence of the two other features. With global clock, we give an algorithm whose time complexity linearly depends on n and on the wake-up time, and an algorithm whose complexity does not depend on the wake-up time and differs from the linear lower bound only by a factor O(log2 n). If n is known, we also show an algorithm whose complexity differs from the linear lower bound only by a factor O(log2 n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J. of Computer and System Sciences 43, 290–298 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attiya, H., Welch, J.: Distributed Computing. John Wiley and Sons, Inc., Chichester (2004)

    Book  Google Scholar 

  3. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in radio networks: an exponential gap between determinism and randomization. Journal of Computer and System Sciences 45, 104–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for simple channels. In: Proceedings, 17th Annual ACM Symposium on Parallel Algorithms (SPAA), pp. 325–332 (2005)

    Google Scholar 

  5. Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory 25, 505–515 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chockler, G., Demirbas, M., Gilbert, S., Lynch, N.A., Newport, C.C., Nolte, T.: Consensus and collision detectors in radio networks. Distributed Computing 21, 55–84 (2008)

    Article  MATH  Google Scholar 

  7. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis and protocol design. IEEE Transactions on Communications 33, 1240–1246 (1985)

    Article  MATH  Google Scholar 

  8. Chlebus, B.S., Gąsieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. Distributed Computing 15, 27–38 (2002)

    Article  MATH  Google Scholar 

  9. Chlebus, B.S., Gąsieniec, L., Kowalski, D.R., Radzik, T.: On the wake-up problem in radio networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 347–359. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Chlebus, B.S., Kowalski, D.R.: A better wake-up in radio networks. In: Proceedings, 23rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 266–274 (2004)

    Google Scholar 

  11. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-access channel. In: Proceedings, 25th ACM Symposium on Principles of Distributed Computing (PODC), pp. 92–101 (2006)

    Google Scholar 

  12. Chrobak, M., Gąsieniec, L., Kowalski, D.R.: The wake-up problem in multi-hop radio networks. SIAM J. Comput. 36, 1453–1471 (2007)

    Article  MATH  Google Scholar 

  13. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. J. Algorithms 43, 177–189 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: Proceedings, 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 709–718 (2001)

    Google Scholar 

  15. Clementi, A.E.F., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant broadcasting on wireless networks. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 452–463. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proceedings, 44th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 492–501 (2003)

    Google Scholar 

  17. Gąsieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast systems. SIAM Journal on Discrete Mathematics 14, 207–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-channel radio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Fusco, E.G., Pelc, A.: Acknowledged broadcasting in ad hoc radio networks. Information Processing Letters 109, 136–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gilbert, S., Guerraoui, R., Newport, C.C.: Of malicious motes and suspicious sensors: On the efficiency of malicious interference in wireless networks. Theor. Comput. Sci. 410, 546–569 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldberg, L.A., Jerrum, M., Kannan, S., Paterson, M.: A bound on the capacity of backoff and acknowledgment-based protocols. SIAM J. Comput. 33, 313–331 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. J. ACM 32, 589–596 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hayes, J.F.: An adaptive technique for local distribution. IEEE Transactions on Communications 26, 1178–1186 (1978)

    Article  Google Scholar 

  24. Indyk, P.: Explicit constructions of selectors and related combinatorial structures, with applications. In: Proceedings, 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 697–704 (2002)

    Google Scholar 

  25. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Efficient algorithms for leader election in radio networks. In: Proceedings, 21st Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 51–57 (2002)

    Google Scholar 

  26. Jurdziński, T., Stachowiak, G.: Probabilistic algorithms for the wakeup problem in single-hop radio networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 535–549. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Koo, C.-Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio networks: the bounded collision case. In: Proceedings, 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 258–264 (2006)

    Google Scholar 

  28. Kowalski, D.R.: On selection problem in radio networks. In: Proceedings, 24th ACM Symposium on Principles of Distributed Computing (PODC), pp. 158–166 (2005)

    Google Scholar 

  29. Kowalski, D.R., Pelc, A.: Deterministic broadcasting time in radio networks of unknown topology. In: Proceedings, 22nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 73–82 (2003)

    Google Scholar 

  30. Kushilevitz, Y., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in radio networks. SIAM J. on Computing 27, 702–712 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publ., Inc., San Francisco (1996)

    MATH  Google Scholar 

  32. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE Transactions on Parallel Distributed Systems 13, 516–526 (2002)

    Article  Google Scholar 

  33. Pelc, A.: Activating anonymous ad hoc radio networks. Distributed Computing 19, 361–371 (2007)

    Article  MATH  Google Scholar 

  34. Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random transmission failures. In: Proceedings, 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 334–341 (2005)

    Google Scholar 

  35. Tsybakov, B.S., Mikhailov, V.A.: Free synchronous packet access in a broadcast channel with feedback. Prob. Inf. Transmission 14, 259–280 (1978); Translated from Russian original. Prob. Peredach. Inf. (1977)

    MathSciNet  MATH  Google Scholar 

  36. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. on Computing 15, 468–477 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J., Gąsieniec, L., Kowalski, D.R., Pelc, A. (2009). Consensus and Mutual Exclusion in a Multiple Access Channel. In: Keidar, I. (eds) Distributed Computing. DISC 2009. Lecture Notes in Computer Science, vol 5805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04355-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04355-0_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04354-3

  • Online ISBN: 978-3-642-04355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics