Skip to main content

Tensor-Guided Hex-Dominant Mesh Generation with Targeted All-Hex Regions

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

In this paper, we present a method for generating hex-dominant meshes with targeted all-hex regions over closed volumes. The method begins by generating a piecewise-continuous metric tensor field over the volume. This field specifies desired anisotropy and directionality during the subsequent meshing stages. Meshing begins with field-guided tiling of individual structured hexahedral fronts wherever suitable and in regions of interest (ROI). Then, the hexahedral fronts are incorporated into an existing hex-dominant meshing procedure, resulting in a good quality hex-dominant mesh. Presently, many successful hex meshing methods require significant preprocessing and have limited control over mesh directionality and anisotropy. In light of this, hex-dominant meshes have gained traction for industry analyses. In turn, this presents the challenge of increasing the hex-to-tet ratio in hex-dominant meshes, especially in ROI specified by analysts. Here, a novel three-part strategy addresses this goal: generation of a guiding tensor field, application of topological insertion operators to tile elements and grow fronts towards the boundary, and incorporation of the fronts into a hex-dominant meshing procedure. The field directionality is generated from boundary information, which is then adjusted to specified uniform anisotropy. Carefully placed streamsurfaces of the metric field are intersected to shape new elements, and the insertion operators maintain mesh integrity while tiling new elements. Finally, the effectiveness of the proposed method is demonstrated with a non-linear, large deformation, finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lu, Y., Gadh, R., Tautges, T.J.: Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation. In: Proceedings of the 8th International Meshing Roundtable, pp. 269–280 (1999)

    Google Scholar 

  2. Schneiders, R., Schindler, R., Weiler, F.: Octree-based Generation of Hexahedral Element Meshes. In: Proceedings of the 5th International Meshing Roundtable, pp. 205–216 (1996)

    Google Scholar 

  3. Zhang, Y., Hughes, T.J.R., Bajaj, C.L.: Automatic 3D Mesh Generation for a Domain With Multiple Materials. In: Proceedings of the 16th International Meshing Roundtable, pp. 367–386 (2007)

    Google Scholar 

  4. Blacker, T.D., Meyers, R.J.: Seams and Wedges in Plastering: A 3D Hexahedral Mesh Generation Algorithm. Engineering with Computers 2(9), 83–93 (1993)

    Article  Google Scholar 

  5. Staten, M.L., Kerr, R.A., Owen, S.J., Blacker, T.D.: Unconstrained Paving and Plastering: Progress Update. In: Proceedings of the 15th International Meshing Roundtable, pp. 469–496 (2006)

    Google Scholar 

  6. Blacker, T.: Meeting the Challenge for Automated Conformal Hexahedral Meshing. In: Proceedings of the 9th International Meshing Roundtable, pp. 11–19 (2000)

    Google Scholar 

  7. Yamakawa, S., Shimada, K.: High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing. In: Proceedings of the 9th International Meshing Roundtable (2000)

    Google Scholar 

  8. Shimada, K., Liao, J.-H., Itoh, T.: Quadrilateral Meshing With Directionality Control through the Packing of Square Cells. In: Proceedings of the 7th International Meshing Roundtable, pp. 61–76 (1998)

    Google Scholar 

  9. Viswanath, N., Shimada, K., Itoh, T.: Quadrilateral Meshing With Anisotropy and Directionality Control Via Close Packing Of Rectangular Cells. In: Proceedings of the 9th International Meshing Roundtable, pp. 217–225 (2000)

    Google Scholar 

  10. Bossen, F.J., Heckbert, P.S.: A Pliant Method for Anisotropic Mesh Generation. In: Proceedings of the 5th International Meshing Roundtable, pp. 63–76 (1996)

    Google Scholar 

  11. Li, X.Y., Teng, S.H., Üngör, A.: Biting Ellipses to Generate Anisotropic Mesh. In: Proceedings of the 8th International Meshing Roundtable, pp. 97–108 (1999)

    Google Scholar 

  12. Strang, G.: Linear Algebra and Its Applications, 3rd edn. Brooks-Cole (1988)

    Google Scholar 

  13. Sirois, Y., Dompierre, J., Vallet, M.G., Guibault, F.: Mesh Smoothing Based On Riemannian Metric Non-Conformity Minimization. In: Proceedings of the 15th International Meshing Roundtable, pp. 271–288 (2006)

    Google Scholar 

  14. Zhang, E., Hays, J., Turk, G.: Interactive Tensor Field Design and Visualization on Surfaces. IEEE Trans. Visual Comput. Graphics 13(1), 94–107 (2007)

    Article  Google Scholar 

  15. Palacios, J., Zhang, E.: Rotational Symmetry Field Design on Surfaces. In: Proceedings of ACM SIGGRAPH, p. 55 (2007)

    Google Scholar 

  16. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., Desbrun, M.: Anisotropic Polygonal Remeshing. In: Proceedings of ACM SIGGRAPH, pp. 485–493 (2003)

    Google Scholar 

  17. Tchon, K.F., Dompierre, J., Vallet, M.G., Camarero, R.: Visualizing Mesh Adaptation Metric Tensors. In: Proceedings of the 13th International Meshing Roundtable, pp. 353–363 (2004)

    Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. JHU Press, Baltimore (1996)

    MATH  Google Scholar 

  19. Sundareswara, R., Schrater, P.: Extensible Point Location Algorithm. In: Proceedings of the 2003 International Conference on Geometric Modeling and Graphics, pp. 84–89 (2003)

    Google Scholar 

  20. Pennec, X., Fillard, P., Ayache, N.: A Riemannian Framework for Tensor Computing. Int. J. Comput. Vision 66(1), 41–66 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hesselink, L., Levy, Y., Lavin, Y.: The Topology of Symmetric, Second-Order 3D Tensor Fields. IEEE Trans. Visual Comput. Graphics 3(1) (1997)

    Google Scholar 

  22. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge Univ. Press, UK (1992)

    Google Scholar 

  23. Akenine-Möller, T.: Fast 3D triangle-box overlap testing. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Courses, Article 8 (2005)

    Google Scholar 

  24. Yamakawa, S., Shimada, K.: Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. International Journal for Numerical Methods in Engineering 57(15), 2099–2129 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zheng, X., Parlett, B.N., Pang, A.: Topological lines in 3D tensor fields and discriminant Hessian factorization. IEEE Trans. Vis. and Comput. Graphics 11(4) (2005)

    Google Scholar 

  26. Simulia Corp., ABAQUS Analysis User’s Manual, Version 6.8 (2008)

    Google Scholar 

  27. Meyers, R.J., Tautges, T.J., Tuchinsky, P.M.: The ‘Hex-Tet’ Hex-Dominant Meshing Algorithm as Implemented in CUBIT. In: Proceedings of the 7th International Meshing Roundtable, pp. 151–158 (1998)

    Google Scholar 

  28. Edelsbrunner, H.: Square Tori: -5/4 time. 180 Wrapped Tubes, http://www.cs.duke.edu/~edels/Tubes/tori/quad/n5.stl

  29. Yamakawa, S., Shimada, K.: Subdivision Templates for Converting a Non-conformal Hex-Dominant Mesh to a Conformal Hex-Dominant Mesh without Pyramid Elements. In: Proceedings of the 17th International Meshing Roundtable, pp. 497–512 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vyas, V., Shimada, K. (2009). Tensor-Guided Hex-Dominant Mesh Generation with Targeted All-Hex Regions. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics