Skip to main content

Multimodal Sparse Features for Object Detection

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

In this paper the sparse coding principle is employed for the representation of multimodal image data, i.e. image intensity and range. We estimate an image basis for frontal face images taken with a Time-of-Flight (TOF) camera to obtain a sparse representation of facial features, such as the nose. These features are then evaluated in an object detection scenario where we estimate the position of the nose by template matching and a subsequent application of appropriate thresholds that are estimated from a labeled training set. The main contribution of this work is to show that the templates can be learned simultaneously on both intensity and range data based on the sparse coding principle, and that these multimodal templates significantly outperform templates generated by averaging over a set of aligned image patches containing the facial feature of interest as well as multimodal templates computed via Principal Component Analysis (PCA). The system achieves a detection rate of 96.4% on average with a false positive rate of 3.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory 52(1), 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311–3325 (1997)

    Article  Google Scholar 

  3. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 411–426 (2007)

    Article  Google Scholar 

  4. Labusch, K., Barth, E., Martinetz, T.: Simple Method for High-Performance Digit Recognition Based on Sparse Coding. IEEE Transactions on Neural Networks 19(11), 1985–1989 (2008)

    Article  Google Scholar 

  5. Oggier, T., Büttgen, B., Lustenberger, F., Becker, G., Rüegg, B., Hodac, A.: SwissRangerTM SR3000 and first experiences based on miniaturized 3D-TOF cameras. In: Ingensand, K. (ed.) Proc. 1st Range Imaging Research Day, Zurich, pp. 97–108 (2005)

    Google Scholar 

  6. Böhme, M., Haker, M., Martinetz, T., Barth, E.: Shading constraint improves accuracy of time-of-flight measurements. In: CVPR 2008 Workshop on Time-of-Flight-based Computer Vision, TOF-CV (2008)

    Google Scholar 

  7. Hansen, D.W., Hansen, M., Kirschmeyer, M., Larsen, R., Silvestre, D.: Cluster tracking with time-of-flight cameras. In: CVPR 2008 Workshop on Time-of-Flight-based Computer Vision, TOF-CV (2008)

    Google Scholar 

  8. Kollorz, E., Penne, J., Hornegger, J., Barke, A.: Gesture recognition with a Time-Of-Flight camera. International Journal of Intelligent Systems Technologies and Applications 5(3/4), 334–343 (2008)

    Article  Google Scholar 

  9. Gudmundsson, S.A., Aanaes, H., Larsen, R.: Fusion of Stereo Vision and Time-of-Flight Imaging for Improved 3D Estimation. In: Dynamic 3D Imaging – Workshop in Conjunction with DAGM (2007) (in print)

    Google Scholar 

  10. Kolb, A., Barth, E., Koch, R., Larsen, R.: Time-of-Flight Sensors in Computer Graphics. Eurographics State of the Art Reports, 119–134 (2009)

    Google Scholar 

  11. Haker, M., Böhme, M., Martinetz, T., Barth, E.: Geometric invariants for facial feature tracking with 3D TOF cameras. In: Proceedings of the IEEE International Symposium on Signals, Circuits & Systems (ISSCS), Iasi, Romania, vol. 1, pp. 109–112 (2007)

    Google Scholar 

  12. Yin, L., Basu, A.: Nose shape estimation and tracking for model-based coding. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2001), May 2001, vol. 3, pp. 1477–1480 (2001)

    Google Scholar 

  13. Gorodnichy, D.O.: On importance of nose for face tracking. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FG 2002), Washington, D.C, May 2002, pp. 188–196 (2002)

    Google Scholar 

  14. ARTTS: 3D TOF Database, http://www.artts.eu/publications/3d_tof_db

  15. Oggier, T., Büttgen, B., Lustenberger, F., Becker, G., Rüegg, B., Hodac, A.: SwissRangerTM SR3000 and first experiences based on miniaturized 3D-TOF cameras. In: Proceedings of the 1st Range Imaging Research Day, Zürich, Switzerland, pp. 97–108 (2005)

    Google Scholar 

  16. Lewicki, M.S., Sejnowski, T.J., Hughes, H.: Learning overcomplete representations. Neural Computation 12, 337–365 (2000)

    Article  Google Scholar 

  17. Labusch, K., Barth, E., Martinetz, T.: Sparse Coding Neural Gas: Learning of Overcomplete Data Representations. Neurocomputing (2009) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haker, M., Martinetz, T., Barth, E. (2009). Multimodal Sparse Features for Object Detection. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics