Skip to main content

Constrained Learning Vector Quantization or Relaxed k-Separability

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

Abstract

Neural networks and other sophisticated machine learning algorithms frequently miss simple solutions that can be discovered by a more constrained learning methods. Transition from a single neuron solving linearly separable problems, to multithreshold neuron solving k-separable problems, to neurons implementing prototypes solving q-separable problems, is investigated. Using Learning Vector Quantization (LVQ) approach this transition is presented as going from two prototypes defining a single hyperplane, to many co-linear prototypes defining parallel hyperplanes, to unconstrained prototypes defining Voronoi tessellation. For most datasets relaxing the co-linearity condition improves accuracy increasing complexity of the model, but for data with inherent logical structure LVQ algorithms with constraints significantly outperforms original LVQ and many other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duch, W.: k-separability. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Schölkopf, B., Smola, A.: Learning with Kernels. In: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  5. Grochowski, M., Duch, W.: A Comparison of Methods for Learning of Highly Non-Separable Problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 566–577. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Grochowski, M., Duch, W.: Projection Pursuit Constructive Neural Networks Based on Quality of Projected Clusters. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part II. LNCS, vol. 5164, pp. 754–762. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Duch, W., Blachnik, M.: Fuzzy rule-based systems derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  9. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classification. Elis Horwood, London (1994)

    MATH  Google Scholar 

  10. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of data. Proceedings of the IEEE 92(5), 771–805 (2004)

    Article  Google Scholar 

  11. Kohonen, T.: Self-organizing maps. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  12. Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of lvq algorithms. J. Mach. Learn. Res. 8, 323–360 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  14. Duch, W., Adamczak, R., Diercksen, G.: Classification, association and pattern completion using neural similarity based methods. Applied Mathematics and Computer Science 10, 101–120 (2000)

    MATH  Google Scholar 

  15. Duch, W.: Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics 29, 937–968 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory 114, 515–516 (1968)

    Article  Google Scholar 

  17. Jankowski, N., Grochowski, M.: Comparison of instance selection algorithms. i. algorithms survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Hippe, Z.: Data mining in medical diagnosis. In: Kącki, E. Computers in Medicine, Łodź, Poland, vol. 1, pp. 25–34. Polish Society of Medical Informatics (1999)

    Google Scholar 

  19. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grochowski, M., Duch, W. (2009). Constrained Learning Vector Quantization or Relaxed k-Separability. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics