Skip to main content

Novelty Detection from Evolving Complex Data Streams with Time Windows

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2009)

Abstract

Novelty detection in data stream mining denotes the identification of new or unknown situations in a stream of data elements flowing continuously in at rapid rate. This work is a first attempt of investigating the anomaly detection task in the (multi-)relational data mining. By defining a data block as the collection of complex data which periodically flow in the stream, a relational pattern base is incrementally maintained each time a new data block flows in. For each pattern, the time consecutive support values collected over the data blocks of a time window are clustered, clusters are then used to identify the novelty patterns which describe a change in the evolving pattern base. An application to the problem of detecting novelties in an Internet packet stream is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blockeel, H., Sebag, M.: Scalability and efficiency in multi-relational data mining. SIGKDD Explorations Newsletter 5(1), 17–30 (2003)

    Article  Google Scholar 

  2. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M., Thatte, M., White, W.: Cayuga: a high-performance event processing engine. In: International Conference on Management of Data, pp. 1100–1102. ACM, New York (2007)

    Google Scholar 

  3. Domingos, P., Hulten, G.: Mining high-speed data streams. In: the 6th International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 71–80. ACM, New York (2000)

    Google Scholar 

  4. Džeroski, S., Lavrač, N.: Relational Data Mining. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  5. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. SIGMOD Record 34(2), 18–26 (2005)

    Article  MATH  Google Scholar 

  6. Gama, J.: Issues and challenges in learning from data streams. In: Kargupta, H., Han, J., Yu, P.S., Motwani, R., Kumar, V. (eds.) Data Mining and Knowledge Discovery Series on Next Generation of Data Mining, pp. 209–222. Chapman and Hall, CRC Press, Taylor and Francis Group (2009)

    Google Scholar 

  7. Ganti, V., Gehrke, J., Ramakrishnan, R.: Mining data streams under block evolution. SIGKDD Explorations 3(2), 1–10 (2002)

    Article  Google Scholar 

  8. Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. In: the 33th Symposium on Theory of Computing, STOC 2001, pp. 471–475. ACM, New York (2001)

    Google Scholar 

  9. http://www.streambase.com/

  10. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: the 7th International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 97–106. ACM, New York (2001)

    Google Scholar 

  11. Lisi, F.A., Malerba, D.: Inducing multi-level association rules from multiple relations. Machine Learning 55(2), 175–210 (2004)

    Article  MATH  Google Scholar 

  12. Ma, J., Perkins, S.: Online novelty detection on temporal sequences. In: the 9th International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 613–618. ACM, New York (2003)

    Google Scholar 

  13. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

    Article  Google Scholar 

  14. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  15. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)

    Article  Google Scholar 

  17. Spinosa, E.J., de Carvalho, A.P.d.L.F., Gama, J.: Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In: The Symposium on Applied Computing, SAC 2008, pp. 976–980. ACM, New York (2008)

    Chapter  Google Scholar 

  18. Zhang, X., Dong, G., Kotagiri, R.: Exploring constraints to efficiently mine emerging patterns from large high-dimensional datasets. In: Knowledge Discovery and Data Mining, pp. 310–314 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ceci, M., Appice, A., Loglisci, C., Caruso, C., Fumarola, F., Malerba, D. (2009). Novelty Detection from Evolving Complex Data Streams with Time Windows. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04125-9_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04124-2

  • Online ISBN: 978-3-642-04125-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics