Skip to main content

Fast Principal Components Analysis Method for Finance Problems With Unequal Time Steps

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2008

Abstract

The use of the Principal Components Analysis (PCA) method as a variance reduction technique when evaluating integrals from mathematical finance using quasi-Monte Carlo point sets suffers from a distinct disadvantage in that it requires a dense matrix-vector multiplication with \(\mathcal{O}(s^{2})\) computations for an s-dimensional problem. It was shown by Scheicher 18 that the cost of this matrix-vector multiplication could be reduced to \(\mathcal{O}(s\log s)\) arithmetic operations for problems where the time steps are equally sized. In this paper we show how we may drop this requirement and perform the matrix-vector multiplication in \(\mathcal{O}(s\log s\log(1/\varepsilon))\) arithmetic operations for any desired accuracy ε>0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Acworth, M. Broadie, and P. Glasserman. A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, editors, Monte Carlo and Quasi-Monte Carlo Methods 1996, volume 127 of Lecture Notes in Statistics, pages 1–18. Springer-Verlag, New York, NY, 1998.

    Google Scholar 

  2. F. Åkesson and J. Lehoczky. Discrete eigenfunction expansion of multi-dimensional Brownian motion and the Ornstein-Uhlenbeck process. Technical report, Department of Statistics, Carnegie-Melon University, Pittsburgh, PA, 1998.

    Google Scholar 

  3. P. P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics, 4:323–338, May 1977.

    Article  Google Scholar 

  4. J. R. Bunch, C. P. Nielsen, and D. C. Sorensen. Rank-one modification of the symmetric eigenproblem. Numer. Math., 31:31–48, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Chandrasekaran and M. Gu. A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices. Numer. Math., 96:723–731, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math., 36:177–195, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. J. Dongarra and D. C. Sorensen. A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput., 8:139–154, 1987.

    Article  MathSciNet  Google Scholar 

  8. A. Dutt, M. Gu, and V. Rokhlin. Fast algorithms for polynomial interpolation, integration and differentiation. SIAM J. Numer. Anal., 33:1689–1711, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. B. Giles, F. Y. Kuo, I. H. Sloan, and B. J. Waterhouse. Quasi-Monte Carlo for finance applications. In G. N. Mercer and A. J. Roberts, editors, Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, volume 50 of ANZIAM J., pages C308–C323, 2008.

    Google Scholar 

  10. G. H. Golub. Some modified matrix eigenvalue problems. SIAM Rev., 15:318–334, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73:325–348, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Gu and S. C. Eisenstat. A stable and fast algorithm for updating the singular value decomposition. Technical Report YALE/DCS/TR966, Department of Computer Science, Yale University, New Haven, CT, 1993.

    Google Scholar 

  13. M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15:1266–1276, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Kahan. Rank-1 perturbed diagonal’s eigensystem. unpublished manuscript, Department Computer Science, Stanford University, CA, 1989.

    Google Scholar 

  15. P. L’Ecuyer, J.-S. Parent-Chartier, and M. Dion. Simulation of a Lévy process by PCA sampling to reduce the effective dimension. In WSC ’08: Proceedings of the 40th Conference on Winter Simulation, pages 436–443. Winter Simulation Conference, 2008.

    Google Scholar 

  16. R. Li. Solving secular equations stably and efficiently. Technical report CSD-94-851, University of California at Berkeley, Berkeley, CA, 1993.

    Google Scholar 

  17. N. Mastronardi, E. van Camp, and M. van Barel. Divide and conquer algorithms for computing the eigendecomposition of symmetric diagonal-plus-semiseparable matrices. Numer. Algorithms, 39:379–398, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Scheicher. Complexity and effective dimension of discrete Lévy areas. J. Complexity, 23:152–168, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. C. Sorensen and P. T. P. Tang. On the orthogonality of eigenvectors computed by divide-and-conquer techniques. SIAM J. Numer. Anal., 28:1752–1775, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Keiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keiner, J., Waterhouse, B.J. (2009). Fast Principal Components Analysis Method for Finance Problems With Unequal Time Steps. In: L' Ecuyer, P., Owen, A. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04107-5_29

Download citation

Publish with us

Policies and ethics