Skip to main content

Allergens Exposure Assessment

  • Chapter
  • First Online:
Contact Dermatitis

Abstract

Many allergens are widely used in both environmental and occupational products. In many cases, it is difficult to know all the ingredients of a product since most products are not sufficiently labelled. To diagnose and prevent allergic contact dermatitis, the demonstration of allergens in the products from the patient´s environment is important. Chemical analysis of a product can make it possible to demonstrate the presence or absence of known allergens. Simple spot tests or documented analytical methods such as thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), gas chromatography (GC), atomic absorption spectrophotometry (AAS) and inductively coupled plasma –mass spectrometry (ICP-MS) can be used. Moreover, with chemical methods, the purity of a substance can be checked and new allergens can be isolated and identified. Advanced methods such as mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR) and infrared spectrophotometry (IR) are often required to identify isolated allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruze M, Gruvberger B, Fregert S (2006) Chemical skin burns. In: Chew A, Maibach HI, Lepoittevin JP (eds) Irritant dermatitis. Springer, Berlin, pp 53–61

    Chapter  Google Scholar 

  2. Feigl F, Anger V (1966) Spot tests in organic analysis, 7th edn. Elsevier, Amsterdam

    Google Scholar 

  3. Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  4. Fisher’s Contact Dermatitis (1995) eds Rietschel RL, Fowler JF Jr 4th edn. Williams & Wilkins, Baltimore, pp 857–857

    Google Scholar 

  5. European Committee for Standardisation (CEN) (2002) Screening tests for nickel release from alloys and coatings in items that come in direct and prolonged contact with the skin. CR: 12471

    Google Scholar 

  6. Fregert S, Trulsson L (1978) Simple methods for demonstration of epoxy resin of bisphenol A type. Contact Dermatitis 4:69–72

    Article  PubMed  CAS  Google Scholar 

  7. Dahlquist I, Fregert S, Gruvberger B (1980) Reliability of the chromotropic acid method for qualitative formaldehyde determination. Contact Dermatitis 6:357–358

    Article  PubMed  CAS  Google Scholar 

  8. Fregert S, Dahlquist I, Gruvberger B (1984) A simple method for detection of formaldehyde. Contact Dermatitis 10:132–134

    Article  PubMed  CAS  Google Scholar 

  9. Rajan-Sithamparanadarajah R, Roff M, Delgado P et al (2004) Patterns of dermal exposure to hazardous substances in European Union workplaces. Ann Occup Hyg 48: 285–297

    Article  PubMed  CAS  Google Scholar 

  10. Schneider T, Vermeulen R, Brouwer DH et al (1999) Conceptual model for assessment of dermal exposure. Occup Environ Med 56:765–773

    Article  PubMed  CAS  Google Scholar 

  11. Van Wendel-de-Joode B, Brouwer DH, Vermeulen R et al (2003) DREAM: a method for semi-quantitative dermal exposure assessment. Ann Occup Hyg 47:71–87

    Article  Google Scholar 

  12. European Committee for Standardisation (CEN) (2006) Workplace exposure–measurement of dermal exposure–principles and methods. CEN/TS 15279:2006

    Google Scholar 

  13. Aragón A, Blanco L, López L et al (2004) Reliability of a visual scoring system with fluorescent tracers to assess dermal pesticide exposure. Ann Occup Hyg 48:601–606

    Google Scholar 

  14. Aragón A, Blanco LE, Funez A et al (2006) Assessment of dermal pesticide exposure with fluorescent tracer: a modification of a visual scoring system for developing countries. Ann Occup Hyg 50:75–83

    Google Scholar 

  15. Blanco LE, Aragón A, Lundberg I et al (2005) Determinants of dermal exposure among Nicaraguan subsistence farmers during pesticide applications with backpack sprayers. Ann Occup Hyg 49:17–24

    Google Scholar 

  16. Cohen Hubal EA, Suggs JC, Nishioka MG et al (2005) Characterizing residue transfer efficiencies using a fluorescent imaging technique. J Expo Anal Environ Epidemiol 15:261–270

    Google Scholar 

  17. Fenske RA (1988) Visual scoring system for fluorescent tracer evaluation of dermal exposure to pesticides. Bull Environ Contam Toxicol 41:727–736

    Article  PubMed  CAS  Google Scholar 

  18. Cherrie JW, Brouwer DH, Roff M et al (2000) Use of qualitative and quantitative fluorescence techniques to assess dermal exposure. Ann Occup Hyg 44:519–522

    Google Scholar 

  19. Roff M, Wheeler J, Baldwin P (2001) Comparison of fluorescence and rinsing methods for assessing dermal exposure. Appl Occup Environ Hyg 16:319–322 ta troligen bort ref

    Google Scholar 

  20. Brouwer DH, Boeniger MF, van Hemmen J (2000) Hand wash and manual skin wipes. Ann Occup Hyg 44:501–510

    Google Scholar 

  21. Lind M-L, Boman A, Surakka J et al (2004) A method for assessing occupational dermal exposure to premanent hair dyes. Ann Occup Hyg 48:533–539

    Article  PubMed  CAS  Google Scholar 

  22. Lind M-L, Boman A, Sollenberg J et al (2004) Occupational dermal exposure to permanent hair dyes among hairdressers. Ann Occup Hyg 49(49):473–480

    Google Scholar 

  23. Henriks-Eckerman ML, Suuronen K, Jolanki R et al (2007) Determination of occupational exposure to alkanolamines in metal-working fluids. Ann Occup Hyg 51:153–160

    Article  PubMed  CAS  Google Scholar 

  24. Lidén C, Skare L, Lind B et al (2006) Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS. Contact Dermatitis 54:233–238

    Article  PubMed  Google Scholar 

  25. Lidén C, Skare L, Nise G et al (2008) Deposition of nickel, chromium, and cobalt on the skin in some occupations—assessment by acid wipe sampling. Contact Dermatitis 58:347–354

    Article  PubMed  Google Scholar 

  26. Lidén C, Skare L, Vahter M (2008) Release of nickel from coins and deposition onto skin from coin handling—comparing euro coins and SEK. Contact Dermatitis 59: 31–37

    Article  PubMed  Google Scholar 

  27. Staton I, Ma R, Evans N et al (2006) Dermal nickel exposure associated with coin handling and in various occupational settings: assessment using a newly developed finger immersion method. Br J Dermatol 154:658–664

    Article  PubMed  CAS  Google Scholar 

  28. Eriksson K, Hagström K, Axelsson S et al (2008) Tape-stripping as a m ethod for measuring dermal exposure to resin acids during wood pellet production. J Environ Monit 10:345–352

    Google Scholar 

  29. Lundgren L, Skare L, Lidén C (2006) Measuring dust on skin with a small vacuuming sampler—a comparison with other sampling techniques. Ann Occup Hyg 50:95–103

    Article  PubMed  Google Scholar 

  30. Mattorano DA, Kupper LL, Nylander-French LA (2004) Estimating dermal exposure to jet fuel (naphthalene) using adhesive tape strip samples. Ann Occup Hyg 48:139–146

    Article  PubMed  CAS  Google Scholar 

  31. Nylander-French LA (2000) A tape-stripping method for measuring dermal exposure to multifunctional acrylates. Ann Occup Hyg 44:645–651

    Article  PubMed  CAS  Google Scholar 

  32. Surakka J, Lindh T, Rosén G et al (2000) Workers’ dermal exposure to UV-curable acrylates in the furniture and parquet industry. Ann Occup Hyg 44:635–644

    PubMed  CAS  Google Scholar 

  33. Hostýnek JJ, Dreher F, Nakada T et al (2001) Human stratum corneum adsorption of nickel salts. Investigation of depth profiles by tape stripping in vivo. Acta Derm Venereol Suppl (Stockh) 212:11–18

    Google Scholar 

  34. OECD (1997) Guidance document for the conduct of studies of occupational exposure to pesticides during agricultural application. Environment, health and safety publications series on testing and assessment, no 9

    Google Scholar 

  35. Soutar A, Semple S, Aitken RJ et al (2000) Use of patches and whole body sampling for the assessment of dermal exposure. Ann Occup Hyg 44:511–518

    PubMed  CAS  Google Scholar 

  36. Roff M, Bagon DA, Chambers H et al (2004) Dermal exposure to electroplating fluids and metalworking fluids in the UK. Ann Occup Hyg 48:209–217

    Article  PubMed  CAS  Google Scholar 

  37. Anveden I, Lidén C, Alderling M et al (2006) Self-reported skin exposure – validation of questions by observation. Contact Dermatitis 55:186–191

    Google Scholar 

  38. Fregert S, Gruvberger B (1972) Chemical properties of cement. Berufsdermatosen 20:238–248

    PubMed  CAS  Google Scholar 

  39. Hansen MB, Menné T, Johansen JD (2006) Cr(III) and Cr(VI) in leather and elicitation of eczema. Contact Dermatitis 54:278–282

    Article  PubMed  CAS  Google Scholar 

  40. Ingber A, Gammelgaard B, David M (1998) Detergents and bleaches are sources of chromium contact dermatitis in Israel. Contact Dermatitis 38:101–104

    Article  PubMed  CAS  Google Scholar 

  41. Julander A, Hindsén M, Skare L et al (2009) Cobalt-containing alloys and their ability to release cobalt and cause dermatitis. Contact Dermatitis 60:165–170

    Google Scholar 

  42. Lachapelle JM, Lauwerys R, Tennstedt D et al (1980) Eau de Javel and prevention of chromate allergy in France. Contact Dermatitis 6:107–110

    Article  PubMed  CAS  Google Scholar 

  43. Nygren O, Wahlberg JE (1998) Speciation of chromium in tanned leather gloves and relapse of chromium allergy from tanned leather samples. Analyst 123:935–937

    Article  PubMed  CAS  Google Scholar 

  44. Summer B, Fink U, Zeller R et al (2007) Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release. Contact Dermatitis 57:35–39

    Article  PubMed  CAS  Google Scholar 

  45. Tandon R, Aarts B (1993) Chromium, nickel and cobalt contents of some Australian cements. Contact Dermatitis 28:201–205

    Article  PubMed  CAS  Google Scholar 

  46. Wass U, Wahlberg JE (1991) Chromated steel and contact allergy. Recommendation concerning a “threshold limit value” for the release of hexavalent chromium. Contact Dermatitis 24:114–118

    Article  PubMed  CAS  Google Scholar 

  47. Bergendorff O, Hansson C (2001) Stability of thiuram disulfides in patch test preparations and formation of asymmetric disulfides. Contact Dermatitis 45:151–157

    Article  PubMed  CAS  Google Scholar 

  48. Bergendorff O, Persson C, Hansson C (2006) High-performance liquid chromatography analysis of rubber allergens in protective gloves used in health care. Contact Dermatitis 55:210–215

    Article  PubMed  CAS  Google Scholar 

  49. Knudsen BB, Larsen E, Egsgaard H et al (1993) Release of thiurams and carbamates from rubber gloves. Contact Dermatitis 28:63–69

    Article  PubMed  CAS  Google Scholar 

  50. Bruze M, Fregert S (1983) Studies on purity and stability of photopatch test substances. Contact Dermatitis 9:33–39

    Article  PubMed  CAS  Google Scholar 

  51. Bruze M, Fregert S, Gruvberger B (1984) Occurrence of para-aminobenzoic acid and benzocaine as contaminants in sunscreen agents of para-aminobenzoic acid type. Photodermatology 1:277–285

    PubMed  CAS  Google Scholar 

  52. Bruze M, Gruvberger B, Thulin I (1990) PABA, benzocaine, and other PABA esters in sunscreens and after-sun products. Photodermatol Photoimmunol Photomed 7: 106–108

    PubMed  CAS  Google Scholar 

  53. Lidén C, Johnsson S (2001) Nickel on the Swedish market before the Nickel Directive. Contact Dermatitis 44:7–12

    Article  PubMed  Google Scholar 

  54. Lidén C, Röndell E, Skare L et al (1998) Nickel release from tools on the Swedish market. Contact Dermatitis 39:127–131

    Article  PubMed  Google Scholar 

  55. Andersen KE, Nielsen GD, Flyvholm M-A et al (1983) Nickel in tap water. Contact Dermatitis 9:140–143

    Article  PubMed  CAS  Google Scholar 

  56. Bang Pedersen N, Fregert S, Brodelius P et al (1974) Release of nickel from silver coins. Acta Derm Venereol (Stockh) 54:231–234

    Google Scholar 

  57. European Committee for Standardization (CEN) (1998) Reference test method for release of nickel from products intended to come into direct and prolonged contact with the skin. EN 1811

    Google Scholar 

  58. Fischer T, Fregert S, Gruvberger B et al (1984) Contact sensitivity to nickel in white gold. Contact Dermatitis 10: 23–24

    Article  PubMed  CAS  Google Scholar 

  59. Bergh M, Menné T, Karlberg A-T (1994) Colophony in paper-based surgical clothing. Contact Dermatitis 31: 332–333

    Article  PubMed  CAS  Google Scholar 

  60. Ehrin E, Karlberg A-T (1990) Detection of rosin (colophony) components in technical products using an HPLC technique. Contact Dermatitis 23:359–366

    Article  PubMed  CAS  Google Scholar 

  61. Karlberg A-T, Gäfvert E, Meding B et al (1996) Airborne contact dermatitis from unexpected exposure to rosin (colophony). Contact Dermatitis 35:272–278

    Article  PubMed  CAS  Google Scholar 

  62. Sadhra S, Gray CN, Foulds IS (1997) High-performance liquid chromatography of unmodified rosin and its application on contact dermatology. J Chromatogr B Biomed Sci Appl 24(700):101–110

    Article  Google Scholar 

  63. Karlberg A-T, Magnusson K (1996) Rosin components identified in diapers. Contact Dermatitis 34:176–180

    Article  PubMed  CAS  Google Scholar 

  64. Karlberg A-T, Gäfvert E, Lidén C (1995) Environmentally friendly paper may increase risk of hand eczema in rosin-sensitive persons. J Am Acad Dermatol 33:427–432

    Article  PubMed  CAS  Google Scholar 

  65. Rastogi SC, Schouten A, de Kruijf N et al (1995) Contents of methyl-, ethyl-, propyl-, butyl-, and benzylparaben in cosmetic products. Contact Dermatitis 32:28–30

    Article  PubMed  CAS  Google Scholar 

  66. Seventh Commission Directive 96/45/EC of 2 July 1996 relating to methods of analysis necessary for checking the composition of cosmetics products

    Google Scholar 

  67. Sottofattori E, Anzaldi M, Balbi A et al (1998) Simultaneous HPLC determination of multiple components in a commercial cosmetic cream. J Pharm Biomed Anal 18:213–217

    Article  PubMed  CAS  Google Scholar 

  68. Kaniwa M-A, Isama K, Nakamura A et al (1994) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from industrial rubber products. Contact Dermatitis 30:20–25

    Article  PubMed  CAS  Google Scholar 

  69. Kaniwa M-A, Momma J, Ikarashi Y et al (1992) A method for identifying causative chemicals of allergic contact dermatitis using a combination of chemical analysis and patch testing in patients and animal groups: application to a case of rubber boot dermatitis. Contact Dermatitis 27:166–173

    Article  PubMed  CAS  Google Scholar 

  70. Hansson C, Bergendorff O, Ezzelarab M et al (1997) Extraction of mercaptobenzothiazole compounds from rubber products. Contact Dermatitis 36:195–200

    Article  PubMed  CAS  Google Scholar 

  71. Kaniwa M-A, Isama K, Nakamura A et al (1994) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber footwear. Contact Dermatitis 30:26–34

    Article  PubMed  CAS  Google Scholar 

  72. Fregert S, Meding B, Trulsson L (1984) Demonstration of epoxy resin in stoma pouch plastic. Contact Dermatitis 10(2):106

    Article  PubMed  CAS  Google Scholar 

  73. Hansson C (1994) Determination of monomers in epoxy resin hardened at elevated temperature. Contact Dermatitis 31:333–334

    Article  PubMed  CAS  Google Scholar 

  74. Jenkinson HA, Burrows D (1987) Pitfalls in the demonstration of epoxy resins. Contact Dermatitis 16:226–227

    Article  PubMed  CAS  Google Scholar 

  75. Le Coz CJ, Coninx D, Van Rengen A et al (1999) An epidemic of occupational contact dermatitis from an immersion oil for micros in laboratory personnel. Contact Dermatitis 40:77–83

    Article  PubMed  Google Scholar 

  76. Oxholm A, Heidenheim M, Larsen E et al (1990) Extraction and patch testing of methylcinnamate, a newly recognized fraction of balsam of peru. Am J Contact Dermatitis 1:43–46

    Google Scholar 

  77. Avenel-Audran M, Goossens A, Zimerson E et al (2003) Contact dermatitis from electrocardiograph-monitoring electrodes: role of p-tert-butylphenol-formaldehyde resin. Contact Dermatitis 48:108–111

    Google Scholar 

  78. Depree GJ, Bledsoe A, Siegel PD (2005) Survey of sulphur-containing rubber accelerator levels in latex and nitrile exam gloves. Contact Dermatitis 53:107–113

    Article  PubMed  CAS  Google Scholar 

  79. Blom G (1959) Formaldehyde contact dermatitis. Acta Derm Venereol 39:450–453

    Google Scholar 

  80. Gryllaki-Berger M, Mugny Ch, Perrenoud D et al (1992) A comparative study of formaldehyde detection using chromotropic acid, acetylacetone and HPLC in cosmetics and household cleaning products. Contact Dermatitis 26: 149–154

    Article  PubMed  CAS  Google Scholar 

  81. Sheretz EF (1992) Clothing dermatitis: practical aspects for the clinician. Am J Contact Dermatitis 3:55–64

    Google Scholar 

  82. Stonecipher MR, Sherertz EF (1993) Office detection of formaldehyde in fabric: assessment of methods and update on frequency. Am J Contact Dermatitis 4:172–174

    Google Scholar 

  83. Bergendorff O, Ezzelarab M, Wallengren J et al (1994) Airborne contact dermatitis from formaldehyde released from heated plastic polymers. Am J Contact Dermatitis 5:223–225

    Google Scholar 

  84. Karlberg A-T, Skare L, Lindberg I et al (1998) A method for quantification of formaldehyde in the presence of formaldehyde donors in skin-care products. Contact Dermatitis 38:20–28

    Article  PubMed  CAS  Google Scholar 

  85. Second Commission Directive 82/434/EEC, Annex IV, Identification and determination of free formaldehyde

    Google Scholar 

  86. Villa C, Gambaro R, Mariani E et al (2007) High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J Pharm Biomed Anal 44:775–762

    Article  Google Scholar 

  87. Rastogi SC (1995) Analysis of fragrances in cosmetics by gas chromatography-mass spectrometry. J High Resol Chromatogr 18:653–658

    Article  CAS  Google Scholar 

  88. Rastogi SC, Johansen JD, Menné T (1996) Natural ingredients based cosmetics. Content of selected fragrance sensitizers. Contact Dermatitis 34:423–426

    Article  PubMed  CAS  Google Scholar 

  89. Gruvberger B, Bruze M, Tammela M (1998) Preservatives in moisturizers on the Swedish market. Acta Derm Vernerol (Stockh) 78:52–56

    Article  CAS  Google Scholar 

  90. Gruvberger B, Persson K, Björkner B et al (1986) Demonstration of Kathon CG® in some commercial products. Contact Dermatitis 15:24–27

    Article  PubMed  CAS  Google Scholar 

  91. Rastogi SC (1990) Kathon CG and cosmetic products. Contact Dermatitis 22:155–160

    Article  PubMed  CAS  Google Scholar 

  92. Isaksson M, Gruvberger B, Persson L et al (2000) Stability of corticosteroid patch test preparations. Contact Dermatitis 42:144–148

    Article  PubMed  CAS  Google Scholar 

  93. Rastogi SC, Johansen SS (1995) Comparison of high-performance liquid chromatographic methods for the determination of 1, 2-dibromo-2, 4-dicyanobutane in cosmetic products. J Chromatogr A 692:53–57

    Article  CAS  Google Scholar 

  94. Rastogi SC, Zachariae C, Johansen JD et al (2004) Determination of methyldibromoglutaronitrile in cosmetic products by high-performance liquid chromatography with electrochemical detection. Method validation. J Chromatogr 26:1031:315–317

    Google Scholar 

  95. Henriks-Eckerman M-L, Kanerva L (1997) Gas chromatographic and mass spectrometric purity analysis of acrylates and methacrylates used as patch test substances. Am J Contact Dermatitis 8:20–23

    Article  PubMed  CAS  Google Scholar 

  96. Kerre S, Devos L, Verhoeve L et al (1996) Contact allergy to diethylthiourea in a wet suit. Contact Dermatitis 35: 176–178

    Article  PubMed  CAS  Google Scholar 

  97. Bergendorff O, Persson CM, Hansson C (2004) HPLC analysis of alkyl thioureas in an orthopaedic brace and patch testing with pure ethylbutylthiourea. Contact Dermatitis 51:273–277

    Article  PubMed  CAS  Google Scholar 

  98. Dooms-Goossens A, Bruze M, Buysse L et al (1995) Contact allergy to allyl glycidyl ether present as an impurity in 3-glycidyloxypropyltrimethoxysilane, a fixing additive in silicone and polyurethane resins. Contact Dermatitis 33:17–19

    Article  PubMed  CAS  Google Scholar 

  99. Guthrie WG (1984) Analysis of bronopol in water-based lotion. Provisional HPLC method. The Boots Company PLC, Nottingham

    Google Scholar 

  100. Wang H, Provan GJ, Helliwell K (2002) Determination of bronopol and its degradation products by HPLC. J Pharm Biomed Anal 29:387–392

    Article  PubMed  CAS  Google Scholar 

  101. Williams RO III, Mahaguna V, Sriwongjanya M (1997) Determination of diazolidinyl urea in a topical cream by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 29;696:303–306

    Google Scholar 

  102. Pontén A, Zimerson E, Sörensen Ö et al (2004) Chemical analysis of monomers in epoxy resins based on bisphenol F and A. Contact Dermatitis 50:289–297

    Article  PubMed  Google Scholar 

  103. Schouten A, Vermeulen M (1994) The determination of dimethyloldimethylhydantoin (DMDMH) in cosmetic products. TNO Nutrition and Food Research report V 94.608

    Google Scholar 

  104. Frick M, Zimerson E, Karlsson D et al (2004) Poor correlation between stated and found concentrations of diphenylmethane-4, 4´-diisocyanate in petrolatum patch test preparations. Contact Dermatitis 51:73–78

    Article  PubMed  CAS  Google Scholar 

  105. Meding B, Baum H, Bruze M et al (1990) Allergic contact dermatitis from diphenylthiourea in Vulkan heat retainers. Contact Dermatitis 22:8–12

    Article  PubMed  CAS  Google Scholar 

  106. Fregert S, Trulsson L, Zimerson E (1982) Contact allergic reactions to diphenylthiourea and phenylisothiocyanate in PVC adhesive tape. Contact Dermatitis 8:38–42

    Article  PubMed  CAS  Google Scholar 

  107. Ryberg K, Gruvberger B, Zimerson E et al (2008) Chemical 9nvestigations of disperse dyes in patch test preparations. Contact Dermatitis 58:199–209

    Article  PubMed  CAS  Google Scholar 

  108. Uter W, Hildebrandt S, Geier J et al (2007) Current test results in consecutive patients with, and chemical analysis of, disperse blue(DB) 106, DB 124, and the mix of DB 106 and 124. Contact Dermatitis 57:230–234

    Article  PubMed  CAS  Google Scholar 

  109. Kaniwa M-A, Isama K, Nakamura A et al (1994) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber gloves. Contact Dermatitis 31:65–71

    Article  PubMed  CAS  Google Scholar 

  110. Bruze M, Fregert S (1983) Allergic contact dermatitis from ethylene thiourea. Contact Dermatitis 9:208–212

    Article  PubMed  CAS  Google Scholar 

  111. Gimenez-Arnau A, Gimenez-Arnau E, Serra-Baldrich E et al (2002) Principles and methodology for identification of fragrance allergens in consumer products. Contact Dermatitis 47:345–352

    Article  PubMed  CAS  Google Scholar 

  112. Rastogi SC, Johansen JD, Frosch P et al (1998) Deodorants on the European market: quantitative chemical analysis of 21 fragrances. Contact Dermatitis 38:29–35

    Article  PubMed  CAS  Google Scholar 

  113. Rastogi SC, Lepoittevin J-P, Johansen JD et al (1998) Fragrances and other materials in deodorants: search for potentially sensitizing molecules using combined GC-MS and structure activity relationship (SAR) analysis. Contact Dermatitis 39:293–303

    Article  PubMed  CAS  Google Scholar 

  114. Karlberg A-T, Dooms-Goossens A (1997) Contact allergy to oxidized d-limonene among dermatitis patients. Contact Dermatitis 36:201–206

    Article  PubMed  CAS  Google Scholar 

  115. Karlberg A-T, Magnusson K, Nilsson U (1992) Air oxidation of d-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 26:332–340

    Article  PubMed  CAS  Google Scholar 

  116. Bruze M, Edman B, Niklasson B et al (1985) Thin layer chromatography and high pressure liquid chromatography of musk ambrette and other nitromusk compounds including photopatch studies. Photodermatology 2:295–302

    PubMed  CAS  Google Scholar 

  117. Bruze M, Gruvberger B (1985) Contact allergy to photoproducts of musk ambrette. Photodermatology 2:310–314

    PubMed  CAS  Google Scholar 

  118. Bruze M, Persson L, Trulsson L et al (1986) Demonstration of contact sensitizers in resins and products based on phenol-formaldehyde. Contact Dermatitis 14:146–154

    Article  PubMed  CAS  Google Scholar 

  119. Arisu K, Hayakawa R, Ogino Y et al (1992) Tinuvin P® in a spandex tape as a cause of clothing dermatitis. Contact Dermatitis 26:311–316

    Article  PubMed  CAS  Google Scholar 

  120. Björkner B, Niklasson B (1997) Contact allergy to the UV absorber Tinuvin P in a dental restorative material. Am J Contact Dermatitis 8:6–7

    Article  PubMed  Google Scholar 

  121. Niklasson B, Björkner B (1989) Contact allergy to the UV-absorber Tinuvin P in plastics. Contact Dermatitis 21: 330–334

    Article  PubMed  CAS  Google Scholar 

  122. Benassi CA, Semenzato A, Bettero A (1989) High-Performance Liquid Chromatographic determination of free formaldehyde in cosmetics. J Chromatogr 464:387–393

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitta Gruvberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruvberger, B., Bruze, M., Fregert, S., Lidén, C. (2011). Allergens Exposure Assessment. In: Johansen, J., Frosch, P., Lepoittevin, JP. (eds) Contact Dermatitis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03827-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03827-3_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03826-6

  • Online ISBN: 978-3-642-03827-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics