Skip to main content

Range Quantile Queries: Another Virtue of Wavelet Trees

  • Conference paper
String Processing and Information Retrieval (SPIRE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5721))

Included in the following conference series:

Abstract

We show how to use a balanced wavelet tree as a data structure that stores a list of numbers and supports efficient range quantile queries. A range quantile query takes a rank and the endpoints of a sublist and returns the number with that rank in that sublist. For example, if the rank is half the sublist’s length, then the query returns the sublist’s median. We also show how these queries can be used to support space-efficient coloured range reporting and document listing.

This work was supported by the Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation and the German Federal Ministry of Education and Research and by the Australian Research Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. Journal of Computer and System Sciences 7, 448–461 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 377–388. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM Journal on Computing 17, 427–462 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clark, D.: Compact PAT trees. PhD thesis, Waterloo University, Canada (1996)

    Google Scholar 

  5. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 560–571. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Fischer, J.: Efficient Data Structures for String Algorithms. PhD thesis, LMU, München (2007)

    Google Scholar 

  7. Gfeller, B., Sanders, P.: Towards optimal range medians. arXiv:0901.1761 (2009)

    Google Scholar 

  8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proceedings of the 14th Symposium on Discrete Algorithms, pp. 841–850 (2003)

    Google Scholar 

  9. Har-Peled, S., Muthukrishnan, S.M.: Range medians. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 503–514. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th Symposium on Foundations of Computer Science, pp. 549–554 (1989)

    Google Scholar 

  11. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on lists and trees. Nordic Journal of Computing 12, 1–17 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoretical Computer Science 387, 332–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 657–666 (2002)

    Google Scholar 

  14. Navarro, G., Mäkinen, V.: Compressed full text indexes. ACM Computing Surveys 39, Article 2 (2007)

    Google Scholar 

  15. Petersen, H.: Improved bounds for range mode and range median queries. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 418–423. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Petersen, H., Grabowski, S.: Range mode and range median queries in constant time and sub-quadratic space. Information Processing Letters 109, 225–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–242 (2002)

    Google Scholar 

  18. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gagie, T., Puglisi, S.J., Turpin, A. (2009). Range Quantile Queries: Another Virtue of Wavelet Trees . In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds) String Processing and Information Retrieval. SPIRE 2009. Lecture Notes in Computer Science, vol 5721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03784-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03784-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03783-2

  • Online ISBN: 978-3-642-03784-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics