Skip to main content

The h-Index of a Graph and Its Application to Dynamic Subgraph Statistics

  • Conference paper
Algorithms and Data Structures (WADS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5664))

Included in the following conference series:

Abstract

We describe a data structure that maintains the number of triangles in a dynamic undirected graph, subject to insertions and deletions of edges and of degree-zero vertices. More generally it can be used to maintain the number of copies of each possible three-vertex subgraph in time O(h) per update, where h is the h-index of the graph, the maximum number such that the graph contains h vertices of degree at least h. We also show how to maintain the h-index itself, and a collection of h high-degree vertices in the graph, in constant time per update. Our data structure has applications in social network analysis using the exponential random graph model (ERGM); its bound of O(h) time per edge is never worse than the \(\Theta(\sqrt m)\) time per edge necessary to list all triangles in a static graph, and is strictly better for graphs obeying a power law degree distribution. In order to better understand the behavior of the h-index statistic and its implications for the performance of our algorithms, we also study the behavior of the h-index on a set of 136 real-world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R., Ewing, J., Taylor, P.: Citation Statistics: A report from the International Mathematical Union (IMU) in cooperation with the International Council of Industrial and Applied Mathematics (ICIAM) and the Institute of Mathematical Statistics. In: Joint Committee on Quantitative Assessment of Research (2008)

    Google Scholar 

  2. Albert, R., Jeong, H., Barabasi, A.-L.: The diameter of the world wide web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  3. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/

  5. Borgatti, S.P., Everett, M.G., Freeman, L.C.: UCINet 6 for Windows: Software for social network analysis. Analytic Technologies, Harvard, MA (2002)

    Google Scholar 

  6. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. DuBois, C.L., Smyth, P.: UCI Network Data Repository (2008), http://networkdata.ics.uci.edu

  9. Duke, R.A., Lefmann, H., Rödl, V.: A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comput. 24(3), 598–620 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theoretical Computer Science 326(1–3), 57–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eppstein, D.: Connectivity, graph minors, and subgraph multiplicity. Journal of Graph Theory 17, 409–416 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information Processing Letters 51(4), 207–211 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms & Applications 3(3), 1–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J. (ed.) Algorithms and Theory of Computation Handbook, ch. 8, CRC Press, Boca Raton (1999)

    Google Scholar 

  16. Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph statistics. Electronic preprint arxiv:0904.3741 (2009)

    Google Scholar 

  17. Feigenbaum, J., Kannan, S.: Dynamic graph algorithms. In: Rosen, K. (ed.) Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000)

    Google Scholar 

  18. Frank, O.: Statistical analysis of change in networks. Statistica Neerlandica 45, 283–293 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frank, O., Strauss, D.: Markov graphs. J. Amer. Statistical Assoc. 81, 832–842 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Handcock, M.S., Hunter, D., Butts, C.T., Goodreau, S.M., Morris, M.: statnet: An R package for the Statistical Modeling of Social Networks (2003), http://www.csde.washington.edu/statnet

  21. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. National Academy of Sciences 102(46), 16569–16572 (2005)

    Article  Google Scholar 

  22. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  24. Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Information Processing Letters 74(3–4), 115–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Åberg, Y.: The web of human sexual contacts. Nature 411, 907–908 (2001)

    Article  Google Scholar 

  26. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae 26(2), 415–419 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. desolla Price, D.J.: Networks of scientific papers. Science 149(3683), 510–515 (1965)

    Article  Google Scholar 

  29. Pržulj, N., Corneil, D.G., Jurisica, I.: Efficient estimation of graphlet frequency distributions in protein–protein interaction networks. Bioinformatics 22(8), 974–980 (2006)

    Article  Google Scholar 

  30. Robins, G., Morris, M.: Advances in exponential random graph (p*) models. Social Networks 29(2), 169–172 (2007); Special issue of journal with four additional articles

    Article  Google Scholar 

  31. Snijders, T.A.B.: Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure 3(2), 1–40 (2002)

    MathSciNet  Google Scholar 

  32. Snijders, T.A.B., Pattison, P.E., Robins, G., Handcock, M.S.: New specifications for exponential random graph models. Sociological Methodology 36(1), 99–153 (2006)

    Article  Google Scholar 

  33. Thorup, M., Karger, D.R.: Dynamic graph algorithms with applications. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 667–673. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  34. Vassilevska, V., Williams, R.: Finding, minimizing and counting weighted subgraphs. In: Proc. 41st ACM Symposium on Theory of Computing (2009)

    Google Scholar 

  35. Wasserman, S., Pattison, P.E.: Logit models and logistic regression for social networks, I: an introduction to Markov graphs and p*. Psychometrika 61, 401–425 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuster, R.: Finding and counting cliques and independent sets in r-uniform hypergraphs. Information Processing Letters 99(4), 130–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppstein, D., Spiro, E.S. (2009). The h-Index of a Graph and Its Application to Dynamic Subgraph Statistics. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03367-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03366-7

  • Online ISBN: 978-3-642-03367-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics