Skip to main content

Universally Composable Adaptive Priced Oblivious Transfer

  • Conference paper
Pairing-Based Cryptography – Pairing 2009 (Pairing 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5671))

Included in the following conference series:

Abstract

An adaptive k-out-of-N Priced Oblivious Transfer (POT) scheme is a two-party protocol between a vendor and a buyer. The vendor sells a set of messages m 1, . . . ,m N with prices p 1, . . . , p N . In each transfer phase i = 1, . . . , k, the buyer chooses a selection value σ i  ∈ {1, . . . ,N} and interacts with the vendor to buy message m σ i in such a way that the vendor does not learn σ i and the buyer does not get any information about the other messages.

We present a POT scheme secure under pairing-related assumptions in the standard model. Our scheme is universally composable and thus, unlike previous results, preserves security when it is executed with multiple protocol instances that run concurrently in an adversarially controlled way. Furthermore, after an initialization phase of complexity O(N), each transfer phase is optimal in terms of rounds of communication and it has constant computational and communication cost. To achieve these properties, we design the first efficient non-interactive proof of knowledge that a value lies in a given interval we are aware of.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koargonkar, P., Wolin, L.: A multivariate analysis of web usage. Journal of Advertising Research, 53–68 (March/April 1999)

    Google Scholar 

  2. Tsai, J., Egelman, S., Cranor, L., Acquisti, R.: The effect of online privacy information on purchasing behavior: An experimental study, working paper (June 2007)

    Google Scholar 

  3. Grimm, R., Aichroth, P.: Privacy protection for signed media files: a separation-of-duty approach to the lightweight drm (lwdrm) system. In: Dittmann, J., Fridrich, J.J. (eds.) MM&Sec, pp. 93–99. ACM, New York (2004)

    Chapter  Google Scholar 

  4. Lee, D.G., Oh, H.G., Lee, I.Y.: A study on contents distribution using electronic cash system. In: EEE 2004: Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2004), Washington, DC, USA, pp. 333–340. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  5. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–203. Plenum Press, New York (1999)

    Google Scholar 

  6. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and simulatable VRFs revisited. Cryptology ePrint Archive, Report 2009/107 (2009), http://eprint.iacr.org/

  8. Berthold, O., Federrath, H., Köhntopp, M.: Project anonymity and unobservability in the internet. In: CFP 2000: Proceedings of the tenth conference on Computers, freedom and privacy, pp. 57–65. ACM, New York (2000)

    Google Scholar 

  9. Sun, H.-M., Wang, K.-H., Hung, C.-F.: Towards privacy preserving digital rights management using oblivious transfer

    Google Scholar 

  10. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Rabin, M.O.: How to exchange secrets by oblivious transfer (1981)

    Google Scholar 

  12. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Kohlweiss, M., Faust, S., Fritsch, L., Gedrojc, B., Preneel, B.: Efficient oblivious augmented maps: Location-based services with a payment broker. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 77–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS 2001: Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, Washington, DC, USA, p. 136. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  15. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. Cryptology ePrint Archive, Report 2008/163 (2008), http://eprint.iacr.org/

  18. Damgård, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable oblivious transfer. Cryptology ePrint Archive, Report 2008/220 (2008), http://eprint.iacr.org/

  19. Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  20. Tobias, C.: Practical oblivious transfer protocols. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 415–426. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Crescenzo, G.D., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: Proc. of 5th ISTCS, pp. 174–183 (1997)

    Google Scholar 

  24. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Herranz, J.: Restricted adaptive oblivious transfer. Cryptology ePrint Archive, Report 2008/182 (2008), http://eprint.iacr.org/

  26. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using stateful anonymous credentials. Cryptology ePrint Archive, Report 2008/474 (2008), http://eprint.iacr.org/

  27. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Canetti, R.: Obtaining universally compoable security: Towards the bare bones of trust. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 88–112. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Santis, A.D., Di Crescenzo, G., Persiano, G.: Necessary and sufficient assumptions for non-interactive zero-knowledge proofs of knowledge for all NP relations. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 451–462. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  36. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC 1988: Proceedings of the twentieth annual ACM symposium on Theory of computing, pp. 103–112. ACM Press, New York (1988)

    Chapter  Google Scholar 

  37. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  39. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  41. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via insubvertible encryption. In: CCS 2005: Proceedings of the 12th ACM conference on Computer and communications security, pp. 92–101. ACM, New York (2005)

    Google Scholar 

  42. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rial, A., Kohlweiss, M., Preneel, B. (2009). Universally Composable Adaptive Priced Oblivious Transfer. In: Shacham, H., Waters, B. (eds) Pairing-Based Cryptography – Pairing 2009. Pairing 2009. Lecture Notes in Computer Science, vol 5671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03298-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03298-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03297-4

  • Online ISBN: 978-3-642-03298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics