Skip to main content

Comparative Genomic Analysis of Pathogenic Yeasts and the Evolution of Virulence

  • Chapter
  • First Online:
Pathogenic Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

Abstract

The increased availability of molecular data has had a major impact on phylogenetic studies in general, and on the study of fungal phylogeny in particular. To date, more than 60 fungal genomes have been completely sequenced, ranging from the Chytridiomycota to the Ascomycota. There have been several attempts to reconstruct aspects of the fungal Tree of Life, using a variety of approaches (Fitzpatrick et al. 2006; James et al. 2006; Kuramae et al. 2006; Robbertse et al. 2006; Marcet-Houben and Gabaldon 2009).

Because the use of single genes to infer phylogenetic relationships can generate a number of different topologies, it has become increasingly common to use several genes, often concatenating information. A very thorough analysis was carried out by James et al. (2006), who used six genes from 200 species. This analysis supports a monophyletic origin for the Ascomycota, Basidiomycota, and Glomeromycota. The study also addressed the relationship of the Microsporidia, intracellular animal parasites whose phylogenetic origin has long been controversial. James et al. (2006) place the Microsporidia on the earliest diverging fungal branch.

The analysis of Fitzpatrick et al. (2006) used information from 4,805 single-gene families from 42 fully sequenced fungal genomes. A robust phylogeny was generated, supporting the major phyla (Zygomycota, Basidiomycota, and Ascomycota) (Fig. 1.1). The subphyla within the Ascomycota (Taphrinomycotina, Pezizomycotina, and Saccharomycotina) are strongly supported. At the time the analysis was performed few basidiomycete sequences were available, but the monophyletic origin of the Hymenomycetes is clear. The overall structure of the fungal tree is supported by several additional phylogenomic analyzes (Kuramae et al. 2006; Robbertse et al. 2006; Marcet-Houben and Gabaldon 2009).

Phylogenetic relation of fungal species. A maximum likelihood phylogeny was constructed using a concatenated alignment of 153 fungal genes from 42 species. Taken from Fitzpatrick et al. (2006)

The majority of fungi associated with human disease are ascomycetes, from either the subphyla Pezizomycotina (e.g., Aspergilli) or Saccharomycotina (e.g., Candida). This may explain why most available genome sequences are from these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida RS et al (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4:e1000217

    Article  PubMed  CAS  Google Scholar 

  • Argimon S et al (2007) Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell 6:682–692

    Article  PubMed  CAS  Google Scholar 

  • Bailey DA, Feldmann PJ, Bovey M, Gow NA, Brown AJ (1996) The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178:5353–5360

    PubMed  CAS  Google Scholar 

  • Bates S, de la Rosa JM, MacCallum DM, Brown AJ, Gow NA, Odds FC (2007) Candida albicans Iff11, a secreted protein required for cell wall structure and virulence. Infect Immun 75:2922–2928

    Article  PubMed  CAS  Google Scholar 

  • Bose I, Reese AJ, Ory JJ, Janbon G, Doering TL (2003) A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2:655–663

    Article  PubMed  CAS  Google Scholar 

  • Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:57–67

    PubMed  CAS  Google Scholar 

  • Braun BR et al (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1:e1

    Article  CAS  Google Scholar 

  • Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    Article  PubMed  CAS  Google Scholar 

  • Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15:1456–1461

    Article  PubMed  CAS  Google Scholar 

  • Castillo L et al (2008) A study of the Candida albicans cell wall proteome. Proteomics 8:3871–3881

    Article  PubMed  CAS  Google Scholar 

  • Castillo L et al (2006) Genomic response programs of Candida albicans following protoplasting and regeneration. Fungal Genet Biol 43:124–134

    Article  PubMed  CAS  Google Scholar 

  • Chen TA, Hill PB (2005) The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol 16:4–26

    Article  PubMed  Google Scholar 

  • Cheng G, Wozniak K, Wallig MA, Fidel PL Jr, Trupin SR, Hoyer LL (2005) Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 73:1656–1663

    Article  PubMed  CAS  Google Scholar 

  • Cormack B (2004) Can you adhere me now? Good. Cell 116:353–354

    Article  PubMed  CAS  Google Scholar 

  • Cornell MJ et al (2007) Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi. Genome Res 17:1809–1822

    Article  PubMed  CAS  Google Scholar 

  • d'Enfert C et al (2005) CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res 33:D353–D357

    Article  PubMed  CAS  Google Scholar 

  • de Groot PW et al (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965

    Article  PubMed  CAS  Google Scholar 

  • De Las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245–2258

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Carbone I, Dean RA (2007) The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes. BMC Evol Biol 7:30

    Article  PubMed  CAS  Google Scholar 

  • Domergue R et al (2005) Nicotinic Acid limitation regulates silencing of Candida adhesins during UTI. Science 308:866–870

    Article  PubMed  CAS  Google Scholar 

  • Dujon B et al (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Fedorova ND et al (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4:e1000046

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DA, Logue ME, Butler G (2008) Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol Biol 8:181

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99

    Article  PubMed  CAS  Google Scholar 

  • Fraser JA, Hsueh YP, Findley KM, Heitman J (2007) Evoluton of the mating-typ locus: the basdiomycetes. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Aex in Fungi. ASM, Washington, pp 19–34

    Google Scholar 

  • Fu Y et al (2002) Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44:61–72

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE Jr, Filler SG (1998) Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 66:1783–1786

    PubMed  CAS  Google Scholar 

  • Gacser A, Trofa D, Schafer W, Nosanchuk JD (2007) Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117:3049–3058

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanchez S et al (2005) Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 16:2913–2925

    Article  PubMed  CAS  Google Scholar 

  • Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294

    PubMed  CAS  Google Scholar 

  • Gerke J, Lorenz K, Cohen B (2009) Genetic interactions between transcription factors cause natural variation in yeast. Science 323:498–501

    Article  PubMed  CAS  Google Scholar 

  • Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL (2004) RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci USA 97:12158–12163

    Article  PubMed  CAS  Google Scholar 

  • Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4:1102–1115

    Article  PubMed  CAS  Google Scholar 

  • Hall C, Dietrich FS (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved Horizontal Gene Transfer, gene duplication and gene clustering. Genetics 177:2293–2307

    Article  PubMed  CAS  Google Scholar 

  • Heitman J (2006) Sexual reproduction and the evolution of microbial pathogens. Curr Biol 16:R711–R725

    Article  PubMed  CAS  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol 46:1–15

    Article  PubMed  CAS  Google Scholar 

  • Hsueh YP, Heitman J (2008) Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Curr Opin Microbiol 11:517–524

    Article  PubMed  CAS  Google Scholar 

  • Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schafer W (2000) Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 174:362–374

    Article  PubMed  CAS  Google Scholar 

  • Hull CM, Heitman J (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36:557–615

    Article  PubMed  CAS  Google Scholar 

  • Ihmels J, Bergmann S, Berman J, Barkai N (2005a) Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLoS Genet 1:e39

    Article  PubMed  CAS  Google Scholar 

  • Ihmels J et al (2005b) Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938–940

    Article  PubMed  CAS  Google Scholar 

  • James TY et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW et al (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  PubMed  CAS  Google Scholar 

  • Jones T et al (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 11:7329–7334

    Article  Google Scholar 

  • Juntachai W, Oura T, Murayama SY, Kajiwara S (2008) The lipolytic enzymes activities of Malassezia species. Med Mycol 16:1–8

    Google Scholar 

  • Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16:2903–2912

    Article  PubMed  CAS  Google Scholar 

  • Kapteyn JC et al (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1, 3-/beta-1, 6-glucan heteropolymer. Glycobiology 6:337–345

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh LA, Fraser JA, Dietrich FS (2006) Recent evolution of the human pathogen Cryptococcus neoformans by intervarietal transfer of a 14-gene fragment. Mol Biol Evol 23:1879–1890

    Article  PubMed  CAS  Google Scholar 

  • Kunau WH, Dommes V, Schulz H (1995) beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34:267–342

    Article  PubMed  CAS  Google Scholar 

  • Kuramae EE, Robert V, Snel B, Weiss M, Boekhout T (2006) Phylogenomics reveal a robust fungal tree of life. FEMS Yeast Res 6:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Kwon-Chung K, Boekhout T, Fell J, Diaz M (2002) Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremenomycetidae). Taxon 51:804–806

    Article  Google Scholar 

  • Kwon-Chung KJ, Edman JC, Wickes BL (1992) Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 60:602–605

    PubMed  CAS  Google Scholar 

  • Lengeler KB et al (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Hull CM, Heitman J (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:1017–1021

    Article  PubMed  CAS  Google Scholar 

  • Lin X et al (2007) alpha AD alpha hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet 3:1975–1990

    PubMed  CAS  Google Scholar 

  • Lin X, Patel S, Litvintseva AP, Floyd A, Mitchell TG, Heitman J (2009) Diploids in the Cryptococcus neoformans serotype a population homozygous for the alpha mating type originate via unisexual mating. PLoS Pathog 5:e1000283

    Article  PubMed  CAS  Google Scholar 

  • Lockhart SR, Messer SA, Pfaller MA, Diekema DJ (2008) Geographic distribution and antifungal susceptibility of the newly described species Candida orthopsilosis and Candida metapsilosis in comparison to the closely related species Candida parapsilosis. J Clin Microbiol 46:2659–2664

    Article  PubMed  CAS  Google Scholar 

  • Loftus BJ et al (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321–1324

    Article  PubMed  Google Scholar 

  • Logsdon JM Jr (2008) Evolutionary genetics: sex happens in Giardia. Curr Biol 18:R66–R68

    Article  PubMed  CAS  Google Scholar 

  • Logue ME, Wong S, Wolfe KH, Butler G (2005) A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot Cell 4:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Lott TJ, Holloway BP, Logan DA, Fundyga R, Arnold J (1999) Towards understanding the evolution of the human commensal yeast Candida albicans. Microbiology 145(Pt 5):1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Machida M et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157–1161

    Article  PubMed  Google Scholar 

  • Marcet-Houben M, Gabaldon T (2009) The tree versus the forest: the fungal tree of life and the topological diversity within the yeast phylome. PLoS ONE 4:e4357

    Article  PubMed  CAS  Google Scholar 

  • Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Massey SE et al (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557

    Article  PubMed  CAS  Google Scholar 

  • Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926

    Article  PubMed  CAS  Google Scholar 

  • Nailis H, Vandenbroucke R, Tilleman K, Deforce D, Nelis H, Coenye T (2009) Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions. Mycopathologia 167:9–17

    Article  PubMed  CAS  Google Scholar 

  • Nierman WC et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ et al (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Nobile CJ et al (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • O'Gorman CM, Fuller HT, Dyer PS (2008) Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:29

    Google Scholar 

  • Paoletti M et al (2005) Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Pel HJ et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163

    Article  PubMed  CAS  Google Scholar 

  • Phan QT et al (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64

    Article  PubMed  CAS  Google Scholar 

  • Reuss O, Morschhauser J (2006) A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol Microbiol 60:795–812

    Article  PubMed  CAS  Google Scholar 

  • Robbertse B, Reeves JB, Schoch CL, Spatafora JW (2006) A phylogenomic analysis of the Ascomycota. Fungal Genet Biol 43:715–725

    Article  PubMed  CAS  Google Scholar 

  • Rossignol T, Ding C, Guida A, d'Enfert C, Higgins DG, Butler G (2009) Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot Cell 8:550–559

    Google Scholar 

  • Silva RM et al (2007) Critical roles for a genetic code alteration in the evolution of the genus Candida. Embo J 26:4555–4565

    Article  PubMed  CAS  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    Article  PubMed  CAS  Google Scholar 

  • Stehr F et al (2004) Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 4:401–408

    Article  PubMed  CAS  Google Scholar 

  • Tavanti A, Davidson AD, Fordyce MJ, Gow NA, Maiden MC, Odds FC (2005) Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J Clin Microbiol 43:5601–5613

    Article  PubMed  CAS  Google Scholar 

  • Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63:1606–1628

    Article  PubMed  CAS  Google Scholar 

  • Thewes S, Moran GP, Magee BB, Schaller M, Sullivan DJ, Hube B (2008) Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. BMC Microbiol 8:187

    Article  PubMed  CAS  Google Scholar 

  • Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6:e38

    Article  PubMed  CAS  Google Scholar 

  • van het Hoog M et al (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8:R52

    Article  CAS  Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    Article  PubMed  CAS  Google Scholar 

  • Xu J et al (2007) Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA 104:18730–18735

    Article  PubMed  Google Scholar 

  • Yu J et al (2008) Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation. Food Addit Contam 15:1–6

    Google Scholar 

  • Zhao X et al (2006) Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152:2287–2299

    Article  PubMed  CAS  Google Scholar 

  • Zhao X et al (2004) ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150:2415–2428

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Oh SH, Yeater KM, Hoyer LL (2005) Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151:1619–1630

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Pujol C, Soll DR, Hoyer LL (2003) Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 149:2947–2960

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fitzpatrick, D.A., Butler, G. (2010). Comparative Genomic Analysis of Pathogenic Yeasts and the Evolution of Virulence. In: Ashbee, R., Bignell, E. (eds) Pathogenic Yeasts. The Yeast Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03150-2_1

Download citation

Publish with us

Policies and ethics