Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5632))

Abstract

Regression models are often required for controlling production processes by predicting parameter values. However, the implicit assumption of standard regression techniques that the data set used for parameter estimation comes from a stationary joint distribution may not hold in this context because manufacturing processes are subject to physical changes like wear and aging, denoted as process drift. This can cause the estimated model to deviate significantly from the current state of the modeled system. In this paper, we discuss the problem of estimating regression models from drifting processes and we present ensemble regression, an approach that maintains a set of regression models—estimated from different ranges of the data set—according to their predictive performance. We extensively evaluate our approach on synthetic and real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spitzlsperger, G., Schmidt, C., Ernst, G., Strasser, H., Speil, M.: Fault detection for a via etch process using adaptive multivariate methods. IEEE Transactions on Semiconductor Manufacturing 18(4), 528–533 (2005)

    Article  Google Scholar 

  2. Bunday, B.D., Bishop, M., Donald, W., McCormack, J., Villarrubia, J.S., Vladar, A.E., Dixson, R., Vorburger, T.V., Orji, N.G., Allgair, J.A.: Determination of optimal parameters for cd-sem measurement of line-edge roughness. Metrology, Inspection, and Process Control for Microlithography XVIII 5375(1), 515–533 (2004)

    Article  Google Scholar 

  3. Yue, H.H., Qin, S.J., Wiseman, J., Toprac, A.: Plasma etching endpoint detection using multiple wavelengths for small open-area wafers. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19(1), 66–75 (2001)

    Article  Google Scholar 

  4. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  5. DiRaddo, R., Girard, P., Chang, S.: Process drift and model-based control of forming operations. In: American Control Conference, 2002. Proceedings of the 2002, vol. 5, pp. 3588–3593 (2002)

    Google Scholar 

  6. Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine Learning 1, 317 (1986)

    Google Scholar 

  7. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  8. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: KDD 2001: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 97–106 (2001)

    Google Scholar 

  9. Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: KDD 2001: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 377–382. ACM, New York (2001)

    Google Scholar 

  10. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: KDD 2003: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 226–235. ACM, New York (2003)

    Google Scholar 

  11. Kolter, J., Maloof, M.: Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Third IEEE International Conference on Data Mining (ICDM), November 2003, pp. 123–130 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenthal, F., Volk, P.B., Hahmann, M., Habich, D., Lehner, W. (2009). Drift-Aware Ensemble Regression. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2009. Lecture Notes in Computer Science(), vol 5632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03070-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03070-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03069-7

  • Online ISBN: 978-3-642-03070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics