Skip to main content

An Affine Optical Flow Model for Dynamic Surface Reconstruction

  • Conference paper
Statistical and Geometrical Approaches to Visual Motion Analysis

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5604))

Abstract

In this paper we develop a differential model for simultaneous estimation of geometry and dynamics of a surface patch. To do so we combine a surface patch model in local 3D coordinates, a pinhole camera grid model and a brightness change model analogous to the brightness constancy constraint equation for optical flow. It turns out to be an extension of the well known affine optical flow model to higher dimensional data sets. Each of the translational and affine components of the optical flow is a term consisting of a mixture of surface patch parameters like its depth, slope, velocities etc. We evaluate the model by comparing estimation results using a simple local estimation scheme to available ground-truth. This simple estimation scheme already allows to get results in the same accuracy range one can achieve using range flow, i.e. a model for the estimation of 3D velocities of a surface point given a measured surface geometry. Consequently the new model allows direct estimation of additional surface parameters range flow is not capable of, without loss of accuracy in other parameters. What is more, it allows to design estimators coupling shape and motion estimation which may yield increased accuracy and/or robustness in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiv, G.: Determining 3-d motion and structure from optical flow generated by several moving objects. IEEE Trans. on Pattern Analysis and Machine Intelligence 7(4), 384–401 (1985)

    Article  Google Scholar 

  2. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: International Conference On Computer Vision, pp. 433–438 (1987)

    Google Scholar 

  4. Black, M., Fleet, D., Yacoob, Y.: Robustly estimating changes in image appearence. Computer Vision and Image Understanding 7(1), 8–31 (2000)

    Article  Google Scholar 

  5. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  6. Carceroni, R., Kutulakos, K.: Multi-view 3d shape and motion recovery on the spatio-temporal curve manifold. In: International Conference On Computer Vision, vol. (1), pp. 520–527 (1999)

    Google Scholar 

  7. Cason, C.: Persistence of vision ray tracer (POV-Ray), version 3.6, Windows (2005)

    Google Scholar 

  8. Denney, T.S.J., Prince, J.L.: Optimal brightness functions for optical flow estimation of deformable motion. IEEE Trans. Im. Proc. 3(2), 178–191 (1994)

    Article  Google Scholar 

  9. Farid, H., Simoncelli, E.P.: Optimally rotation-equivariant directional derivative kernels. In: 7th Int’l Conf. Computer Analysis of Images and Patterns, Kiel (1997)

    Google Scholar 

  10. Farnebäck, G.: Fast and accurate motion est. using orient. tensors and param. motion models. In: International Conference on Pattern Recognition, pp. 135–139 (2000)

    Google Scholar 

  11. Fleet, D., Black, M., Yacoob, Y., Jepson, A.: Design and use of linear models for image motion analysis. International Journal of Computer Vision 36(3), 171–193 (2000)

    Article  Google Scholar 

  12. Fleet, D., Langley, K.: Recursive filters for optical flow. Pattern Analysis and Machine Intelligence 17(1), 61–67 (1995)

    Article  Google Scholar 

  13. Fleet, D., Weiss, Y.: Optical flow estimation. In: Mathematical models for Computer Vision: The Handbook, Springer, Heidelberg (2005)

    Google Scholar 

  14. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Haußecker, H., Fleet, D.: Computing optical flow with physical models of brightness variation. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 661–673 (2001)

    Article  Google Scholar 

  16. Haußecker, H., Spies, H.: Motion. In: Jähne, B., Haußecker, H., Geißler, P. (eds.) Handbook of Computer Vision and Applications, Academic Press, London (1999)

    Google Scholar 

  17. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  18. Jähne, B., Scharr, H., Körkel, S.: Principles of filter design. In: Handbook of Computer Vision and Applications, Academic Press, London (1999)

    Google Scholar 

  19. Kanatani, K.: Structure from motion without correspondence: general principle. In: Proc. Image Understanding Workshop, pp. 10711–10716 (1985)

    Google Scholar 

  20. Matthies, L.H., Szeliski, R., Kanade, T.: Kalman filter-based algorithms for estimating depth from image sequences. International Journal of Computer Vision 3, 209–236 (1989)

    Article  Google Scholar 

  21. Li, G., Zucker, S.: Differential geometric consistency extends stereo to curved surfaces. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 44–57. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Longuet-Higgins, H., Prazdny, K.: The interpretation of a moving retinal image. In: Proceedings of The Royal Society of London B, vol. 208, pp. 385–397 (1980)

    Google Scholar 

  23. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver, Canada, August 1981, pp. 674–679 (1981)

    Google Scholar 

  24. Nakamura, Y., Matsuura, T., Satoh, K., Ohta, Y.: Occlusion detectable stereo–occlusion patterns in camera matrix. In: International Conference on Computer Vision and Pattern Recognition, pp. 371–378 (1996)

    Google Scholar 

  25. Nestares, O., Fleet, D., Heeger, D.: Likelihood functions and confidence bounds for total-least-squares problems. In: IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, South Carolina, vol. I, pp. 523–530 (2000)

    Google Scholar 

  26. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision 67(2), 141–158 (2006)

    Article  Google Scholar 

  27. Scharr, H.: Optimal Operators in Digital Image Processing. PhD thesis, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany (2000)

    Google Scholar 

  28. Scharr, H.: Towards a multi-camera generalization of brightness constancy. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 78–90. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Scharr, H.: Optimal filters for extended optical flow. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 14–29. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Scharr, H., Schuchert, T.: Simultaeous estimation of depth, motion and slopes using a camera grid. In: Kobbelt, T.A.L., Kuhlen, T., Westermann, R. (eds.) Vision Modeling and Visualization 2006, Aachen, pp. 81–88 (2006)

    Google Scholar 

  31. Schuchert, T., Aach, T., Scharr, H.: Range flow for varying illumination. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 509–522. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Schuchert, T., Scharr, H.: Simultaneous estimation of surface motion, depth and slopes under changing illumination. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 184–193. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Spies, H., Jähne, B., Barron, J.: Range Flow Estimation. Computer Vision and Image Understanding 85(3), 209–231 (2002)

    Article  MATH  Google Scholar 

  34. Spies, H., Jähne, B.: A general framework for image sequence analysis. In: Fachtagung Informationstechnik, pp. 125–132 (2001), http://citeseerx.ist.psu.edu/viewdoc/summary? , doi:10.1.1.21.1678

  35. Szeliski, R.: A multi-view approach to motion and stereo. In: International Conference on Computer Vision and Pattern Recognition (1999)

    Google Scholar 

  36. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Threedimensional scene flow. In: International Conference On Computer Vision 1999, pp. 722–729 (1999)

    Google Scholar 

  37. Vedula, S., Baker, S., Seitz, S., Collins, R., Kanade, T.: Shape and motion carving in 6d. In: International Conference on Computer Vision and Pattern Recognition 2000, pp. 592–598 (2000)

    Google Scholar 

  38. Waxman, A., Kamgar Parsi, B., Subbarao, M.: Closed-form solutions to image flow equations for 3d structure and motion. International Journal on Computer Vision 1(3), 239–258 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuchert, T., Scharr, H. (2009). An Affine Optical Flow Model for Dynamic Surface Reconstruction. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds) Statistical and Geometrical Approaches to Visual Motion Analysis. Lecture Notes in Computer Science, vol 5604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03061-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03061-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03060-4

  • Online ISBN: 978-3-642-03061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics