Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5590))

Abstract

In a series of papers we have shown that fundamental probabilistic reasoning problems can be encoded as hybrid probabilistic logic programs with probabilistic answer set semantics described in [24]. These probabilistic reasoning problems include, but not limited to, probabilistic planning [28], probabilistic planning with imperfect sensing actions [29], reinforcement learning [30], and Bayes reasoning [25]. Moreover, in [31] we also proved that stochastic satisfiability (SSAT) can be modularly encoded as hybrid probabilistic logic program with probabilistic answer set semantics, therefore, the applicability of SSAT to variety of fundamental probabilistic reasoning problems also carry over to hybrid probabilistic logic programs with probabilistic answer set semantics. The hybrid probabilistic logic programs encoding of these probabilistic reasoning problems is related to and can be translated into SAT, hence, state-of-the-art SAT solver can be used to solve these problems. This paper establishes the foundation of using SAT solvers for reasoning about variety of fundamental probabilistic reasoning problems. In this paper, we show that fundamental probabilistic reasoning problems that include probabilistic planning, probabilistic contingent planning, reinforcement learning, and Bayesian reasoning can be directly encoded as SAT formulae, hence state-of-the-art SAT solver can be used to solve these problems efficiently. We emphasize on SAT encoding for probabilistic planning and probabilistic contingent planning, as similar encoding carry over to reinforcement learning and Bayesian reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baral, C., Tran, N., Tuan, L.C.: Reasoning about actions in a probabilistic setting. In: AAAI (2002)

    Google Scholar 

  2. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assumptions and computational leverage. Journal of AI Research 11, 1–94 (1999)

    MATH  Google Scholar 

  3. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence 90(1-2), 297–298 (1997)

    Article  MATH  Google Scholar 

  4. Blum, A., Langford, J.: Probabilistic planning in the Graphplan framework. In: 5th European Conference on Planning (1999)

    Google Scholar 

  5. Draper, D., Hanks, S., Weld, D.: Probabilistic planning with information gathering and contingent execution. In: Proc. of the 2nd International Conference on Artificial Intelligence Planning Systems, pp. 31–37 (1994)

    Google Scholar 

  6. Eiter, T., Lukasiewicz, T.: Probabilistic reasoning about actions in nonmonotonic causal theories. In: 19th Conference on Uncertainty in Artificial Intelligence (UAI 2003) (2003)

    Google Scholar 

  7. Ernst, M., Millstein, T., Weld, D.: Automatic SAT-compilation of planning problems. In: Proceedings of the International Joint Conference on Artificial Intelligence (1997)

    Google Scholar 

  8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICSLP. MIT Press, Cambridge (1988)

    Google Scholar 

  9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3-4), 363–385 (1991)

    Article  MATH  Google Scholar 

  10. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of Logic Programming 17, 301–321 (1993)

    Article  MATH  Google Scholar 

  11. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

    Article  MATH  Google Scholar 

  12. Castellini, C., Giunchiglia, E., Tacchella, A.: SAT-based planning in complex domains: Concurrency, constraints and nondeterminism. Artificial Intelligence 147(1-2), 85–117 (2003)

    Article  MATH  Google Scholar 

  13. Iocchi, L., Lukasiewicz, T., Nardi, D., Rosati, R.: Reasoning about actions with sensing under qualitative and probabilistic uncertainty. In: 16th European Conference on Artificial Intelligence (2004)

    Google Scholar 

  14. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101, 99–134 (1998)

    Article  MATH  Google Scholar 

  15. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial (1992)

    Google Scholar 

  16. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic search. In: Proc. of 13th National Conference on Artificial Intelligence (1996)

    Google Scholar 

  17. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proceedings of Principles of Knowledge Representation and Reasoning (1996)

    Google Scholar 

  18. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic planning. Artificial Intelligence 76(1-2), 239–286 (1995)

    Article  Google Scholar 

  19. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MATH  Google Scholar 

  20. Littman, M., Goldsmith, J., Mundhenk, M.: The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research 9, 1–36 (1998)

    MATH  Google Scholar 

  21. Majercik, S., Littman, M.: MAXPLAN: A new approach to probabilistic planning. In: Proc. of the 4th International Conference on Artificial Intelligence Planning, pp. 86–93 (1998)

    Google Scholar 

  22. Majercik, S., Littman, M.: Contingent planning under uncertainty via stochastic satisfiability. Artificial Intelligence 147(1–2), 119–162 (2003)

    Article  MATH  Google Scholar 

  23. Saad, E., Pontelli, E.: Towards a more practical hybrid probabilistic logic programming framework. In: Practical Aspects of Declarative Languages (2005)

    Google Scholar 

  24. Saad, E., Pontelli, E.: A new approach to hybrid probabilistic logic programs. Annals of Mathematics and Artificial Intelligence Journal 48(3-4), 187–243 (2006)

    Article  MATH  Google Scholar 

  25. Saad, E.: Incomplete knowlege in hybrid probabilistic logic programs. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS, vol. 4160, pp. 399–412. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Saad, E.: Towards the computation of the stable probabilistic model semantics. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS, vol. 4314, pp. 143–158. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Saad, E.: A logical approach to qualitative and quantitative reasoning. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 173–186. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Saad, E.: Probabilistic planning in hybrid probabilistic logic programs. In: 1st Scalable Uncertainty Management (2007)

    Google Scholar 

  29. Saad, E.: Probabilistic planning with imperfect sensing actions using hybrid probabilistic logic programs. In: Proceedings of the 9th International Workshop on Computational Logic in Multi-Agent Systems (CLIMA 2008) (2008)

    Google Scholar 

  30. Saad, E.: A logical framework to reinforcement learning using hybrid probabilistic logic programs. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS, vol. 5291. Springer, Heidelberg (2008)

    Google Scholar 

  31. Saad, E.: On the relationship between hybrid probabilistic logic programs and stochastic satisfiability. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS, vol. 5291. Springer, Heidelberg (2008)

    Google Scholar 

  32. Scherl, R., Levesque, H.: The frame problem and knowledge producing actions. In: AAAI (1993)

    Google Scholar 

  33. Son, T., Baral, C.: Formalizing sensing actions - a transition function based approach. Artificial Intelligence 125(1-2), 19–91 (2001)

    Article  MATH  Google Scholar 

  34. Subrahmanian, V.S., Zaniolo, C.: Relating stable models and AI planning domains. In: International Conference of Logic Programming, pp. 233–247 (1995)

    Google Scholar 

  35. Tu, P., Son, T., Baral, C.: Reasoning and planning with sensing actions, incomplete information, and static causal laws using logic programming. TPLP 7(4), 377–450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saad, E. (2009). Probabilistic Reasoning by SAT Solvers. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics