Skip to main content

Reasoning with Generic Cases in the Arithmetic of Abstract Matrices

  • Conference paper
Intelligent Computer Mathematics (CICM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5625))

Included in the following conference series:

Abstract

In previous work we have developed procedures to analyse, compute with and reason about abstract matrices, that is, matrices represented with symbolic dimensions and with a mixture of terms and ellipsis symbols to describe their structure. A central component in this are the so-called “support functions”, which enable the representation of abstract matrices in closed forms. A key issue in making reasoning about such structures effective is controlling the complexity of the internal term structure of the closed form, which, in turn, hinges critically on the design of the support functions used.

Our earlier support functions were simple, easy to work with and sufficient to capture arithmetic of general partitioned matrices fully. They explicitly represent each potential homogeneous region, usually a triangle or a rectangle, of an abstract matrix with a single term. However, adding or multiplying a sequence of matrices can result in exponentially many different cases of possible regions that have to be represented, and the existence of many of these is mutually exclusive. As this representation can become unwieldy in certain situations, we experiment with a different type of support function that allows us to represent only one of the possible cases explicitly, and have all other cases captured by the representation implicitly.

In this paper we discuss this new support function and develop the full abstract matrix addition algorithm for this representation. We show that we indeed obtain much more concise and intuitive closed forms, retaining the properties necessary for reasoning with abstract matrices and being able to recover the human readable region structure from the combination of abstract matrices under addition. This representation reduces the time and space complexity of performing K abstract matrix additions from O(N dK) to O(K d N d), for d the number of boundary directions (1 ≤ d ≤ 4) and N the maximum number of boundaries in any direction in the argument matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carette, J.: A canonical form for some piecewise defined functions. In: Proc. ISSAC 2007, pp. 77–84. ACM Press, New York (2007)

    Google Scholar 

  2. Fateman, R.: Manipulation of matrices symbolically (2003), http://http.cs.berkeley.edu/~fateman/papers/symmat2.pdf

  3. Kauers, M., Schneider, C.: Application of unspecified sequences in symbolic summation. In: Proceedings of ISSAC 2006, pp. 177–183 (2006)

    Google Scholar 

  4. Sexton, A.P., Sorge, V.: Abstract matrices in symbolic computation. In: Proceedings of ISSAC 2006, pp. 318–325. ACM Press, New York (2006)

    Google Scholar 

  5. Sexton, A.P., Sorge, V., Watt, S.M.: Abstract matrix arithmetic. In: International Symposium on Symbolic and Algebraic Computation (ISSAC 2008) (2008) (submitted)

    Google Scholar 

  6. Sexton, A.P., Sorge, V., Watt, S.M.: Abstract matrix arithmetic. In: Proceedings of SYNASC 2008. IEEE Computer Society Press, Los Alamitos (2009)

    Google Scholar 

  7. Sexton, A.P., Sorge, V., Watt, S.M.: Computing with abstract matrix structures. In: ISSAC 2009 (submitted, 2009)

    Google Scholar 

  8. Watt, S.M.: Making computer algebra more symbolic. In: Transgressive Computing, pp. 43–49 (2006)

    Google Scholar 

  9. Watt, S.M.: Two families of algorithms for symbolic polynomials. In: Computer Algebra 2006: Advances in Symb. Algorithms, pp. 193–210. World Scientific, Singapore (2006)

    Google Scholar 

  10. Watt, S.M.: Functional decomposition of symbolic polynomials. In: Proc. of ICCSA, pp. 353–362. IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sexton, A.P., Sorge, V., Watt, S.M. (2009). Reasoning with Generic Cases in the Arithmetic of Abstract Matrices. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds) Intelligent Computer Mathematics. CICM 2009. Lecture Notes in Computer Science(), vol 5625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02614-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02614-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02613-3

  • Online ISBN: 978-3-642-02614-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics