Skip to main content

On the Extension of the Namioka-Klee Theorem and on the Fatou Property for Risk Measures

  • Chapter
  • First Online:
Optimality and Risk - Modern Trends in Mathematical Finance

Abstract

This paper has been motivated by general considerations on the topic of Risk Measures, which essentially are convex monotone maps defined on spaces of random variables, possibly with the so-called Fatou property.

We show first that the celebrated Namioka-Klee theorem for linear, positive functionals holds also for convex monotone maps π on Frechet lattices.

It is well-known among the specialists that the Fatou property for risk measures on L enables a simplified dual representation, via probability measures only. The Fatou property in a general framework of lattices is nothing but the lower order semicontinuity property for π. Our second goal is thus to prove that a similar simplified dual representation holds also for order lower semicontinuous, convex and monotone functionals π defined on more general spaces X (locally convex Frechet lattices). To this end, we identify a link between the topology and the order structure in Xthe C-property—that enables the simplified representation. One main application of these results leads to the study of convex risk measures defined on Orlicz spaces and of their dual representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2005)

    Google Scholar 

  2. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, San Diego (1985)

    MATH  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 4, 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barrieu, P., El Karoui, N.: Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Carmona, R. (ed.) Indifference Pricing: Theory and Applications. Princeton University Press, Princeton (2008)

    Google Scholar 

  5. Biagini, S.: An Orlicz spaces duality for utility maximization in incomplete markets. In: Proceedings of Ascona 2005. Progress in Probability. Birkhäuser, Basel (2007)

    Google Scholar 

  6. Biagini, S., Frittelli, M.: A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Prob. 18(3), 929–966 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Biagini, S., Frittelli, M., Grasselli, M.: Indifference price for general semimartingales. Submitted, 2007

    Google Scholar 

  8. Brezis, H.: Analyse fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  9. Cheridito, P., Li, T.: Risk measures on Orlicz hearts. Math. Financ. 19(2), 189–214 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Delbaen, F.: Coherent risk measures on general probability spaces. In: Essays in Honour of Dieter Sondermann. Springer, Berlin (2000)

    Google Scholar 

  11. Filipovic, D., Svindland, G.: The canonical model space for law-invariant convex risk measures is L 1. Preprint (2008)

    Google Scholar 

  12. Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 2nd edn. De Gruyter, Berlin (2004)

    Book  MATH  Google Scholar 

  13. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6(4), 429–447 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Financ. 26(7), 1473–1486 (2002)

    Article  Google Scholar 

  15. Kozek, A.: Convex integral functionals on Orlicz spaces. Ann. Soc. Math. Pol. Ser. 1, Comment. Math. XXI, 109–134 (1979)

    Google Scholar 

  16. Maccheroni, F., Marinacci, M., Rustichini, A.: A variational formula for the relative Gini concentration index. In press

    Google Scholar 

  17. Namioka, I.: Partially Ordered Linear Topological Spaces. Mem. Am. Math. Soc., vol. 24. Princeton University Press, Princeton (1957)

    Google Scholar 

  18. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)

    MATH  Google Scholar 

  19. Rüschendorf, L., Kaina, M.: On convex risk measures on Lp-spaces. Preprint (2007)

    Google Scholar 

  20. Ruszczynski, A., Shapiro, A.: Optimization of convex risk measures. Math. Oper. Res. 31(3), 433–452 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zaanen, A.C.: Riesz Spaces II. North-Holland Math. Library. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Biagini .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biagini, S., Frittelli, M. (2009). On the Extension of the Namioka-Klee Theorem and on the Fatou Property for Risk Measures. In: Optimality and Risk - Modern Trends in Mathematical Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02608-9_1

Download citation

Publish with us

Policies and ethics