Skip to main content

Force Measurements with Optical Tweezers

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

An optical tweezer is a scientific instrument that uses a focused laser beam to provide an attractive or repulsive force, depending on the index mismatch, to physically hold and move microscopic dielectric objects [33.1]:

Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on – and the measurement of nanometer-level displacements of – optically trapped objects.

The ability to apply forces in the piconewton range to micrometer-sized particles while simultaneously measuring displacement with nanometer resolution is now routinely adopted for the study of molecular motors at the single-molecule level [33.2], the physics of colloids and mesoscopic systems [33.3,4], and the mechanical properties of polymers and biopolymers [33.5,6,7]. In parallel with the widespread use of optical trapping, theoretical and experimental work on fundamental aspects of optical trapping is being actively pursued [33.8,9,10]. In this chapter we will give a short overview of the principles of trapping and detection; different calibration methods, as well as the influence of surfaces and viscosity, will be discussed. The chapter ends with a short insight into the application of optical tweezers to cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

ACF:

autocorrelation function

CCD:

charge-coupled device

F-actin:

filamentous actin

IF:

intermediate filament

IF:

intermediate-frequency

MT:

microtubule

NA:

numerical aperture

OT:

optical tweezers

PFM:

photonic force microscope

PSD:

position-sensitive detector

PSD:

position-sensitive diode

PSD:

power-spectral density

QPD:

quadrant photodiode

References

  1. K.C. Neuman, S.M. Block: Optical trapping, Rev. Sci. Instrum. 75(9), 2787–2809 (2004)

    Article  Google Scholar 

  2. N.B. Becker, S.M. Altmann, T. Scholz, J.K.H. Hörber, E.H.K. Stelzer, A. Rohrbach: Three-dimensional bead position histograms reveal single-molecule nanomechanics, Phys. Rev. E 71, 021907 (2005)

    Article  Google Scholar 

  3. R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S.A. Safran: Localized dynamic light scattering: probing single particle dynamics at the nanoscale, Phys. Rev. Lett. 78(1), 154–157 (1997)

    Article  Google Scholar 

  4. A.R. Clapp, A.G. Ruta, R.B. Dickinson: Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface, Rev. Sci. Instrum. 70(6), 2627–2636 (2001)

    Article  Google Scholar 

  5. D.G. Grier: A revolution in optical manipulation, Nature 424, 810–816 (2003)

    Article  Google Scholar 

  6. K. Svoboda, S.M. Block: Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994)

    Article  Google Scholar 

  7. C.L. Kuyper, D.T. Chiu: Optical trapping: A versatile technique for biomanipulation, Appl. Spectrosc. 56(11), 300A–312A (2002)

    Article  Google Scholar 

  8. K. Visscher, G.J. Brakenhoff: Theoretical study of optically induced forces on spherical particles in a single beam trap I: Rayleigh scatterers, Optik 89(2), 174–180 (1992)

    Google Scholar 

  9. K. Visscher, G.J. Brakenhoff: Theoretical study of optically induced forces on spherical particles in a single beam trap II: Mie scatterers, Optik 90(2), 57–60 (1992)

    Google Scholar 

  10. A. Mazolli, P.A. Maia Neto, H.M. Nussenzveig: Theory of trapping forces in optical tweezers, Proc. R. Soc. Lond. Ser. A 459, 3021–3041 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Ashkin: Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24(4), 156–159 (1970)

    Article  Google Scholar 

  12. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu: Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11(5), 288–290 (1986)

    Article  Google Scholar 

  13. A. Ashkin: Trapping of atoms by resonance radiation pressure, Phys. Rev. Lett. 40(12), 729–732 (1978)

    Article  Google Scholar 

  14. C.T. Lim, M. Dao, S. Suresh, C.H. Sow, K.T. Chew: Large deformations of living cells using laser traps, Acta Mater. 52, 1837–1845 (2004)

    Article  Google Scholar 

  15. A. Ashkin, J.M. Dziedzic: Internal cell manipulation using infrared laser traps, Proc. Natl. Acad. Sci. USA 86, 7914–7918 (1989)

    Article  Google Scholar 

  16. A. Ashkin: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J. 61(2), 569–582 (1992)

    Article  Google Scholar 

  17. Y. Harada, T. Asakura: Radiation forces on a dielectric sphere in the Rayleigh scattering regime, Opt. Commun. 124(5/6), 529–541 (1996)

    Article  Google Scholar 

  18. J.P. Barton, D.R. Alexander, S.A. Schaub: Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam, J. Appl. Phys. 66(10), 4594–4602 (1989)

    Article  Google Scholar 

  19. A. Rohrbach, E.-L. Florin, E.H.K. Stelzer: Photonic force microscopy: Simulation of principles and applications, Proc. SPIE 4431, 75–86 (2001)

    Article  Google Scholar 

  20. A. Rohrbach: Stiffness of optical traps: Quantitative agreement between experiment and electromagnetic theory, Phys. Rev. Lett. 95, 168102 (2005)

    Article  Google Scholar 

  21. A. Pralle, M. Prummer, E.-L. Florin, E.H.K. Stelzer, J.K.H. Hörber: Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light, Microsc. Res. Technol. 44, 378–386 (1999)

    Article  Google Scholar 

  22. M. Born, E. Wolf: Principles of Optics (Univ. Press, New York 1999)

    Google Scholar 

  23. A. Rohrbach, E.H.K. Stelzer: Three-dimensional position detection of optically trapped dielectric particles, J. Appl. Phys. 91(8), 5474–5488 (2002)

    Article  Google Scholar 

  24. G. Pesce, A. Sasso, S. Fusco: Viscosity measurements on micron-size scale using optical tweezers, Rev. Sci. Instrum. 76, 115105 (2005)

    Article  Google Scholar 

  25. A. Pralle, E.-L. Florin, E.H.K. Stelzer, J.K.H. Hörber: Local viscosity probed by photonic force microscopy, Appl. Phys. A 66, 71–73 (1998)

    Article  Google Scholar 

  26. M.C. Williams: Optical tweezers: measuring piconewton forces. In: Biophysics Textbook Online (1992) www.biophysics.org/education/williams.pdf

  27. J. Happel, H. Brenner: Low Reynolds Number Hydrodynamics (Prentice Hall, Englewood Cliffs 1965)

    Google Scholar 

  28. E.-L. Florin, A. Pralle, E.H.K. Stelzer, J.K.H. Hörber: Photonic force microscope calibration by thermal noise analysis, Appl. Phys. A 66, 75–78 (1998)

    Article  Google Scholar 

  29. K. Berg-Sørensen, H. Flyvbjerg: Power spectrum analysis for optical tweezers, Rev. Sci. Instrum. 75(3), 594–612 (2004)

    Article  Google Scholar 

  30. S.F. Tolic, E. Schäffer, J. Howard, F.S. Pavone, F. Jülicher, H. Flyvbjerg: Calibration of optical tweezers with positional detection in the back focal plane, Rev. Sci. Instrum. 77, 103101 (2006)

    Article  Google Scholar 

  31. M. Fischer, K. Berg-Sørensen: Calibration of trapping force and response function of optical tweezers in viscoelastic media, J. Opt. A Pure Appl. Opt. 9, 239–250 (2007)

    Article  Google Scholar 

  32. L. Onsager: Reciprocal relations in irreversible processes 1, Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  33. L. Onsager, S. Machlup: Fluctuations and irreversible processes, Phys. Rev. 91(6), 1505–1512 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Brenner: The slow motion of a sphere through a viscous fluid towards a plane surface, Chem. Eng. Sci. 16, 242–251 (1961)

    Article  Google Scholar 

  35. A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, E.H.K. Stelzer: Trapping and tracking a local probe with photonic force microscope, Rev. Sci. Instrum. 75(6), 2197–2210 (2004)

    Article  Google Scholar 

  36. C. Tischer, S. Altmann, S. Fisinger, J.K.H. Hörber, E.H.K. Stelzer, E.-L. Florin: Three-dimensional thermal noise imaging, Appl. Phys. Lett. 79(23), 3878–3880 (2001)

    Article  Google Scholar 

  37. S.P. Gross: Application of optical traps in vivo, Method. Enzymol. 361, 162–174 (2003)

    Article  Google Scholar 

  38. S.C. Kuo: Using optics to measure biological forces and mechanics, Traffic 2(11), 757–763 (2001)

    Article  Google Scholar 

  39. H. Herrmann, M. Hesse, M. Reichenzeller, U. Aebi, T.M. Magin: Functional complexity of intermediate filament cytoskeletons: From structure to assembly to gene ablation, Int. Rev. Cytol. 223, 83–175 (2003)

    Article  Google Scholar 

  40. M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. Bishr Omary, P.P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, T. Seufferlein: Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells, Nat. Cell Biol. 5(9), 803–811 (2003)

    Article  Google Scholar 

  41. T.M. Svitkina, G.G. Borisy: Correlative light and electron microscopy of the cytoskeleton, Cell Biol. 28, 277–286 (1998)

    Google Scholar 

  42. A. Gigler, O. Marti: Quantitative measurement of materials properties with the (digital) pulsed force mode. In: Applied Scanning Probe Methods IX – Characterization, Nanosci. Technol., ed. by B. Bhushan, H. Fuchs, M. Tomitori (Springer, Berlin, Heidelberg 2008) pp. 23–45

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Othmar Marti or Katrin Hübner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Marti, O., Hübner, K. (2010). Force Measurements with Optical Tweezers. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics