Skip to main content

A General and Unifying Framework for Feature Construction, in Image-Based Pattern Classification

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

This paper presents a general and unifying optimization framework for the problem of feature extraction and reduction for high-dimensional pattern classification of medical images. Feature extraction is often an ad hoc and case-specific task. Herein, we formulate it as a problem of sparse decomposition of images into a basis that is desired to possess several properties: 1) Sparsity and local spatial support, which usually provides good generalization ability on new samples, and lends itself to anatomically intuitive interpretations; 2) good discrimination ability, so that projection of images onto the optimal basis yields discriminant features to be used in a machine learning paradigm; 3) spatial smoothness and contiguity of the estimated basis functions. Our method yields a parts-based representation, which warranties that the image is decomposed into a number of positive regional projections. A non-negative matrix factorization scheme is used, and a numerical solution with proven convergence is used for solution. Results in classification of Alzheimers patients from the ADNI study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Teipel, S.J., Born, C., Ewers, M., Bokde, A.L., Reiser, M.F., Müller, H.J., Hampel, H.: Multivariate deformation-based analysis of brain atrophy to predict alzheimer’s disease in mild cognitive impairment. NeuroImage 38(1), 13–24 (2007)

    Article  Google Scholar 

  2. Hua, X., et al.: 3D characterization of brain atrophy in alzheimer’s disease and mild cognitive impairment using tensor-based morphometry. NeuroImage 41(1), 19–34 (2008)

    Article  Google Scholar 

  3. Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: Methods and validation using simulated longitudinal atrophy. NeuroImage 14(6), 1361–1369 (2001)

    Article  Google Scholar 

  4. Wright, I.C., McGuire, P.K., Poline, J.B., Travere, J.M., Murray, R.M., Frith, C.D., Frackowiak, R.S.J., Friston, K.J.: A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 2(4), 244–252 (1995)

    Article  Google Scholar 

  5. Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. NeuroImage 11(6), 805–821 (2000)

    Article  Google Scholar 

  6. Snook, L., Plewesa, C., Beaulieu, C.: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. NeuroImage 34(1), 243–252 (2007)

    Article  Google Scholar 

  7. Salmon, E., Collette, F., Degueldre, C., Lemaire, C., Franck, G.: Voxel-based analysis of confounding effects of age and dementia severity on cerebral metabolism in alzheimer’s disease. Human Brain Mapping 10(1), 39–48 (2000)

    Article  Google Scholar 

  8. Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23, 17–20 (2004)

    Article  Google Scholar 

  9. Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: Compare: Classification of morphological patterns using adaptive regional elements. IEEE Trans. on Med. Imag. 26(1), 93–105 (2007)

    Article  Google Scholar 

  10. Csernansky, J.G., Joshi, S., Wang, L., Haller, J.W., Gado, M., Miller, J.P., Grenander, U., Miller, M.I.: Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proceedings of the National Academy of Sciences 95(19), 11406–11411 (1998)

    Article  Google Scholar 

  11. Thomaz, C., Boardman, J., Counsell, S., Hill, D., Hajnal, J., Edwards, A., Rutherford, M., Gillies, D., Rueckert, D.: A multivariate statistical analysis of the developing human brain in preterm infants. Image and Vision Computing 25(6), 981–994 (2007)

    Article  Google Scholar 

  12. Lashkari, D., Vul, E., Kanwisher, N., Golland, P.: Discovering structure in the space of activation profiles in fMRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 1015–1024. Springer, Heidelberg (2008)

    Google Scholar 

  13. Terriberry, T.B., Joshi, S.C., Gerig, G.: Hypothesis testing with nonlinear shape models. Inf. Process. Med. Imaging 3565(19), 15–26 (2005)

    Article  Google Scholar 

  14. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  15. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  16. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization, 556–562 (2000)

    Google Scholar 

  17. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: NIPS, vol. 16, pp. 1141–1148 (2004)

    Google Scholar 

  18. Sra, S., Dhillon, I.S.: Technical report, Dept. Computer Science, University of Texas at Austin, Austin, TX 78712, USA (June)

    Google Scholar 

  19. Feng, T., Li, S., Shum, H.Y., Zhang, H.: Local non-negative matrix factorization as a visual representation. In: The 2nd International Conference on Development and Learning (2002)

    Google Scholar 

  20. Zdunek, R., Cichocki, A.: Blind image separation using nonnegative matrix factorization with gibbs smoothing. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 519–528. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Wang, Y., Jia, Y., Hu, C., Turk, M.: Fisher non-negative matrix factorization for learning local features. In: Proc. Asian Conf. on Comp. Vision (2004)

    Google Scholar 

  22. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Shen, D., Davatzikos, C.: Very high resolution morphometry using mass-preserving deformations and hammer elastic registration. NeuroImage 18, 28–41 (2003)

    Article  Google Scholar 

  24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batmanghelich, N., Taskar, B., Davatzikos, C. (2009). A General and Unifying Framework for Feature Construction, in Image-Based Pattern Classification. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics