Skip to main content

Regression Models of Atlas Appearance

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

Models of object appearance based on principal components analysis provide powerful and versatile tools in computer vision and medical image analysis. A major shortcoming is that they rely entirely on the training data to extract principal modes of appearance variation and ignore underlying variables (e.g., subject age, gender). This paper introduces an appearance modeling framework based instead on generalized multi-linear regression. The training of regression appearance models is controlled by independent variables. This makes it straightforward to create model instances for specific values of these variables, which is akin to model interpolation. We demonstrate the new framework by creating an appearance model of the human brain from MR images of 36 subjects. Instances of the model created for different ages are compared with average shape atlases created from age-matched sub-populations. Relative tissue volumes vs. age in models are also compared with tissue volumes vs. subject age in the original images. In both experiments, we found excellent agreement between the regression models and the comparison data. We conclude that regression appearance models are a promising new technique for image analysis, with one potential application being the representation of a continuum of mutually consistent, age-specific atlases of the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models – Their training and application. Comput. Vision Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  2. Sozou, P., Cootes, T., Taylor, C., Di-Mauro, E.: A non-linear generalisation of PDMs using polynomial regression. In: Proceedings of the Conference on British Machine Vision, Surrey, UK, vol. 2, pp. 397–406. BMVA Press (1994)

    Google Scholar 

  3. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: IEEE 11th International Conference on Computer Vision, ICCV, October 2007, pp. 1–7 (2007)

    Google Scholar 

  4. Miller, M.I., Christensen, G.E., Amit, Y., Grenander, U.: Mathematical textbook of deformable neuroanatomies. Proc. Natl. Acad. Sci. USA 90(24), 11944–11948 (1993)

    Article  MATH  Google Scholar 

  5. Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., Evans, A.C.: Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 22(2), 324–333 (1998)

    Article  Google Scholar 

  6. Evans, A.C., Collins, D.L.: A 305-member MRI-based stereotactic atlas for CBF activation studies. In: Proc. of the 40th Annual Meeting of the Society for Nuclear Medicine (1993)

    Google Scholar 

  7. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imag. 22(8), 1014–1025 (2003)

    Article  Google Scholar 

  8. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain Map. 2, 189–210 (1995)

    Article  Google Scholar 

  9. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  10. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P.: Accurate inversion of 3-D transformation fields. IEEE Trans. Image Processing 17(10), 1963–1968 (2008)

    Article  MathSciNet  Google Scholar 

  11. Likar, B., Viergever, M.A., Pernus, F.: Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans. Med. Imag. 20(12), 1398–1410 (2001)

    Article  Google Scholar 

  12. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Map. 17(3), 143–155 (2002)

    Article  Google Scholar 

  13. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20(1), 45–57 (2001)

    Article  Google Scholar 

  14. Bodammer, N., Kaufmann, J., Kanowski, M., Tempelmann, C.: Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magn. Reson. Med. 51(1), 188–193 (2004)

    Article  Google Scholar 

  15. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 24(S1), 208–219 (2004)

    Article  Google Scholar 

  16. Cook, P.A., Bai, Y., Nedjati-Gilani, S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: Open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, May 2006, p. 2759 (2006)

    Google Scholar 

  17. Russakoff, D.B., Tomasi, C., Rohlfing, T., Maurer Jr., C.R.: Image similarity using mutual information of regions. In: Pajdla, T., Matas, J.(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)

    Article  Google Scholar 

  19. Learned-Miller, E.G.: Data driven image models through continuous joint alignment. IEEE Trans. Pattern Anal. Machine Intell. 28(2), 236–250 (2006)

    Article  Google Scholar 

  20. Studholme, C., Cardenas, V.: A template free approach to volumetric spatial normalization of brain anatomy. Pattern Recogn. Lett. 25(10), 1191–1202 (2004)

    Article  Google Scholar 

  21. Pfefferbaum, A., Mathalon, D.H., Sullivan, E.V., Rawles, J.M., Zipursky, R.B., Lim, K.O.: A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch. Neurol. 51(9), 874–887 (1994)

    Article  Google Scholar 

  22. Rohlfing, T., Brandt, R., Menzel, R., Maurer Jr., C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

    Article  Google Scholar 

  23. Wold, S., Ruhe, A., Would, H., Dunn, W.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984)

    Article  MATH  Google Scholar 

  24. Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N.A., Friston, K.J., Frackowiak, R.S.J.: A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14(1), 21–36 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rohlfing, T., Sullivan, E.V., Pfefferbaum, A. (2009). Regression Models of Atlas Appearance. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics