Skip to main content

Transforming Time Series into Complex Networks

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

We introduce transformations from time series data to the domain of complex networks which allow us to characterise the dynamics underlying the time series in terms of topological features of the complex network. We show that specific types of dynamics can be characterised by a specific prevalence in the complex network motifs. For example, low-dimensional chaotic flows with one positive Lyapunov exponent form a single family while noisy non-chaotic dynamics and hyper-chaos are both distinct. We find that the same phenomena is also true for discrete map-like data. These algorithms provide a new way of studying chaotic time series and equip us with a wide range of statistical measures previously not available in the field of nonlinear time series analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baier, G., Klein, M.: Maximum hyperchaos in generalized henon maps. Physics Letters A 151, 281–284

    Google Scholar 

  2. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  Google Scholar 

  3. Lacasa, L.: Private communication (2008)

    Google Scholar 

  4. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuño, J.: From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 105(13), 4972–4975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mackey, M.C., Glass, L.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  6. Marwan, N., Romano, M., Theil, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Physics Reports 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  7. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004)

    Article  Google Scholar 

  8. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  9. Rössler, O.E.: Continuous chaos — four prototype equations. Annals of the New York Academy of Sciences 316, 376–392 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Small, M., Yu, D., Harrison, R.G.: Surrogate test for pseudo-periodic time series data. Physical Review Letters 87, 188101 (2001)

    Article  Google Scholar 

  11. Theil, M., Romano, M., Read, P., Kurths, J.: Estimation of dynamical invariants withour embedding by recurrence plots. Chaos 14, 234–243 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Thiel, M., Ramano, M.C., Kurths, J.: How much information is contained in a recurrence plot? Physics Letters A 330, 343–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Webber Jr., C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology 76, 965–973 (1994)

    Google Scholar 

  14. Xu, X., Zhang, J., Small, M.: Superfamily phenomena and motifs of networks induced from time series. Proc. Natl. Acad. Sci. USA 105(50), 19601–19605 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, Y., Yang, H.: Complex network-based time series analysis. Physica A 387, 1381–1386 (2008)

    Article  Google Scholar 

  16. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: Topology versus dynamics. Physical Review Letters 96, 238701 (2006)

    Article  Google Scholar 

  17. Zhang, J., Sun, J., Luo, X., Zhang, K., Nakamura, T., Small, M.: Characterizing pseudoperiodic time series through the complex network approach. Physica D 237, 2856–2865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Small, M., Zhang, J., Xu, X. (2009). Transforming Time Series into Complex Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics