Skip to main content

Efficient Inference of Haplotypes from Genotypes on a Pedigree with Mutations and Missing Alleles (Extented Abstract)

  • Conference paper
Combinatorial Pattern Matching (CPM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5577))

Included in the following conference series:

Abstract

Driven by the international HapMap project, the haplotype inference problem has become an important topic in the computational biology community. In this paper, we study how to efficiently infer haplotypes from genotypes of related individuals as given by a pedigree. Our assumption is that the input pedigree data may contain de novo mutations and missing alleles but is free of genotyping errors and recombinants, which is usually true for tightly linked markers. We formulate the problem as a combinatorial optimization problem, called the minimum mutation haplotype configuration (MMHC) problem, where we seek haplotypes consistent with the given genotypes that incur no recombinants and require the minimum number of mutations. This extends the well studied zero-recombinant haplotype configuration (ZRHC) problem. Although ZRHC is polynomial-time solvable, MMHC is NP-hard. We construct an integer linear program (ILP) for MMHC using the system of linear equations over the field F(2) that has been developed recently to solve ZRHC. Since the number of constraints in the ILP is large (exponentially large in the general case), we present an incremental approach for solving the ILP where we gradually add the constraints to a standard ILP solver until a feasible haplotype configuration is found. Our preliminary experiments on simulated data demonstrate that the method is very efficient on large pedigrees and can infer haplotypes very accurately as well as recover most of the mutations and missing alleles correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abecasis, G.R., Cherny, S.S., Cookson, W.O., Cardon, L.R.: Merlin — rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30(1), 97–101 (2002)

    Article  Google Scholar 

  2. Albers, C.A., Heskes, T., Kappen, H.J.: Haplotype inference in general pedigrees using the cluster variation method. Genetics 177(2), 1101–1116 (2007)

    Article  Google Scholar 

  3. Badaeva, T.N., Malysheva, D.N., Korchagin, V.I., Ryskov, A.P.: Genetic variation and De Novo mutations in the parthenogenetic caucasian rock lizard Darevskia unisexualis. PLoS ONE 3(7), e2730 (2008)

    Article  Google Scholar 

  4. Baruch, E., Weller, J.I., Cohen-Zinder, M., Ron, M., Seroussi, E.: Efficient inference of haplotypes from genotypes on a large animal pedigree. Genetics 172(3), 1757–1765 (2006)

    Article  Google Scholar 

  5. Ellegren, H.: Microsatellite mutations in the germline: Implications for evolutionary inference. Trends in Genetics 16(12), 551–558 (2000)

    Article  Google Scholar 

  6. Gusfield, D.: Inference of haplotypes from samples of diploid populations: Complexity and algorithms. J. Computational Biology 8(3), 305–323 (2001)

    Article  Google Scholar 

  7. Kimura, M., Crow, J.F.: The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964)

    Google Scholar 

  8. Lander, E.S., Green, P.: Construction of multilocus genetic linkage maps in humans. In: Proc. of the National Academy of Sciences. Genetics, vol. 84, pp. 2363–2367 (1987)

    Google Scholar 

  9. Li, J., Jiang, T.: Efficient inference of haplotypes from genotypes on a pedigree. J. Computational Biology 1(1), 41–69 (2003)

    Google Scholar 

  10. Li, J., Jiang, T.: Computing the minimum recombinant haplotype configuration from incomplete genotype data on a pedigree by integer linear programming. J. Computational Biology 12(6), 719–739 (2005)

    Article  Google Scholar 

  11. Li, J., Jiang, T.: A survey on haplotype algorithms for tightly linked markers. J. Bioinformatics and Computational Biology 6(1), 241–259 (2008)

    Article  Google Scholar 

  12. Liu, L., Jiang, T.: Linear-time reconstruction of zero-recombinant mendelian inheritance on pedigrees without mating loops. Genome Informatics 19, 95–106 (2007)

    Google Scholar 

  13. Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70(1), 157–169 (2002)

    Article  Google Scholar 

  14. Olson, T.M., Doan, T.P., Kishimoto, N.Y., Whitby, F.G., Ackerman, M.J., Fananapazir, L.: Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J. Molecular and Cellular Cardiology 32(9), 1687–1694 (2000)

    Article  Google Scholar 

  15. Qian, D., Beckmann, L.: Minimum-recombinant haplotyping in pedigrees. Am. J. Hum. Genet. 70(6), 1434–1445 (2002)

    Article  Google Scholar 

  16. Sobel, E., Lange, K., O’Connell, J.R., Weeks, D.E.: Haplotyping algorithms. In: Speed, T., Waterman, M.S. (eds.) Genetic Mapping and DNA Sequencing. IMA Volumes in Mathematics and its Applications, vol. 81, pp. 89–110. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68(4), 978–989 (2001)

    Article  Google Scholar 

  18. Tapadar, P., Ghosh, S., Majumder, P.P.: Haplotyping in pedigrees via a genetic algorithm. Human Heredity 50(1), 43–56 (2000)

    Article  Google Scholar 

  19. The Internaltional HapMap Consortium. The international HapMap project. Nature 426, 789–796 (2003)

    Google Scholar 

  20. Wang, S., Kidd, K.K., Zhao, H.: On the use of DNA pooling to estimate haplotype frequencies. Genetic Epidemiology 24(1), 74–82 (2003)

    Article  Google Scholar 

  21. Xiao, J., Liu, L., Xia, L., Jiang, T.: Fast elimination of redundant linear equations and reconstruction of recombination-free mendelian inheritance on a pedigree. In: 18th Annual ACM-SIAM Symposium on Descrete Algorithms, pp. 655–664 (2007)

    Google Scholar 

  22. Yang, Y., Zhang, J., Hoh, J., Matsuda, F., Xu, P., Lathrop, M., Ott, J.: Efficiency of single-nucleotide polymorphism haplotype estimation from pooled DNA. Proc. of the National Academy of Sciences 100, 7225–7230 (2002)

    Article  Google Scholar 

  23. Zhang, K., Sun, F., Zhao, H.: HAPLORE: A program for haplotype reconstruction in general pedigrees without recombination. Bioinformatics 21(1), 90–103 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, WB., Jiang, T. (2009). Efficient Inference of Haplotypes from Genotypes on a Pedigree with Mutations and Missing Alleles (Extented Abstract). In: Kucherov, G., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 2009. Lecture Notes in Computer Science, vol 5577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02441-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02441-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02440-5

  • Online ISBN: 978-3-642-02441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics