Skip to main content

Water Management by Dormant Insects: Comparisons Between Dehydration Resistance During Summer Aestivation and Winter Diapause

  • Chapter
  • First Online:
Aestivation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 49))

Abstract

During summer in temperate regions and tropical dry seasons insects are exposed to extended periods with little available water. To counter this dehydration stress, insects have two options. They can either remain active by utilizing mechanisms to function under severe water stress and high temperatures, or they can escape from the stressful environment by exploiting an aestivation mechanism. During aestivation, insects undergo a variety of molecular and biochemical changes to arrest development, reduce metabolism, tolerate high temperatures, and increase their ability to maintain water balance. In this review, I provide a synopsis of known and possible mechanisms utilized by insects to reduce the stress of dehydration during aestivation. Comparative observations of aestivating and diapausing insects are also discussed to assess similarities and differences in the methods used by insects to increase dehydration resistance between these two types of dormancies. Adaptations that alter moisture requirements during diapause (low metabolic rate, increases in osmolytes, shifts in cuticular hydrocarbons, cell membrane restructing) are likely similar to those utilized at the induction and during the maintenance phase of aestivation. Few studies have been conducted on the physiology, particularly the biochemistry and molecular regulation, of aestivating insects, indicating that much more research is needed to fully assess water balance characteristics of insects during aestivation. Whether an insect is in diapause or aestivation, behavioral, biochemical, and physiological adaptations are essential for suppressing water loss and enhancing survival in a desiccated state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahearn GA (1970) The control of water loss in desert tenebrionid beetles. J Exp Biol 53:573–595

    CAS  PubMed  Google Scholar 

  • Bayley M, Holmstrup M (1999) Water vapor absorption in arthropods by accumulation of myoinositol and glucose. Science 285:1909–1911

    Article  CAS  PubMed  Google Scholar 

  • Bayley M, Petersen SO, Knigge T, Köhler HR, Holmstrup M (2001) Drought acclimation confers cold tolerance in the soil collembolan, Folsomia candida. J Insect Physiol 47:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Benoit JB, Denlinger DL (2007) Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. J Exp Biol 210:217–226

    Article  PubMed  Google Scholar 

  • Benoit JB, Yoder JA, Rellinger EJ, Ark JT, Keeney GD (2005) Prolonged maintenance of water balance by adult females of the American spider beetle, Mezium affine Boieldieu, in the absence of food and water resources. J Insect Physiol 51:565–573

    Article  CAS  PubMed  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Michaud MR, Elnitsky MA, Lee RE Jr, Denlinger DL (2007a) Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. J Insect Physiol 53:656–667

    Article  CAS  PubMed  Google Scholar 

  • Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2007b) Habitat requirements of the seabird tick, Ixodes uriae (Acari: Ixodidae), from the Antarctic Peninsula in relation to water balance characteristics of eggs, nonfed and engorged stages. J Comp Physiol B 177:205–215

    Article  CAS  PubMed  Google Scholar 

  • Benoit JB, Del Grosso NA, Yoder JA, Denlinger DL (2007c) Resistance to dehydration between bouts of blood feeding in the bed bug, Cimex lectularius, is enhanced by water conservation, aggregation, and quiescence. Am J Trop Med Hyg 76:987–993

    PubMed  Google Scholar 

  • Benoit JB, Yoder JA, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2008a) Adaptations for the maintenance of water balance by three species of Antarctic mites. Polar Biol 31:539–547

    Article  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Philips SA, Elnitsky MA, Yoder JA, Lee RE Jr, Denlinger DL (2008b) The seabird tick, Ixodes uriae, uses uric acid in penguin feces as a kairomone and guanine in tick feces as an assembly pheromone on the Antarctica Peninsula. Polar Biol 31:1445–1451

    Article  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2009a) Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp Biochem Physiol B 152:518–526

    Article  CAS  Google Scholar 

  • Benoit JB, Lopez-Martinez G, Phillips ZP, Patrick KR, Denlinger DL (2009b) Heat shock proteins contribute to mosquito dehydration tolerance. J Insect Physiol (Submitted)

    Google Scholar 

  • Blomquist GJ, Nelson DR, de Renobales M (1987) Chemistry, biochemistry, and physiology of insect cuticular lipids. Arch Insect Biochem Physiol 6:227–265

    Article  CAS  Google Scholar 

  • Bradley TJ (1985) The excretory system: structure and physiology. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Permagon, Oxford, pp 421–465

    Google Scholar 

  • Bradley TJ, Williams AE, Rose MR (1999) Physiological responses to selection for desiccation resistance in Dropohilia melangaster. Am Zool 39:337–345

    Google Scholar 

  • Bursell E (1957) Spiracular control of water loss in the tsetse fly. Proc Royal Entomol Soc London 32:21–29

    Google Scholar 

  • Chown SL (2002) Respiratory water loss in insects. Comp Biochem Physiol B 133:791–804

    Article  CAS  Google Scholar 

  • Chown SL, Nicolson SW (2004) Insect physiological ecology. Oxford University Press, Oxford, pp 87–114

    Google Scholar 

  • Cloudsley-Thompsen JL (2001) Thermal and water relations of desert beetles. Naturwissenschaften 88:447–460

    Article  CAS  Google Scholar 

  • Coast GM (2006) Insect diuretic and antidiuretic hormones. In: Kastin AJ (ed) Handboook of biologically active pepetides. Academic, London, pp 157–162

    Chapter  Google Scholar 

  • Coast GM, Orchard I, Phillips JE, Schooley DA (2002) Insect diuretic and antidiuretic hormones. Adv Insect Physiol 29:279–409

    Article  CAS  Google Scholar 

  • Cooper PD (1985) Seasonal changes in water budgets in two free-ranging tenebrionids beetles, Eleodes armata and Cryptoglossa verrucosa. Physiol Zool 58:458–472

    Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Ann Rev Physiol 54:579–599

    Article  CAS  Google Scholar 

  • Danks HV (2000) Dehydration in dormant insects. J Insect Physiol 46:837–852

    Article  CAS  PubMed  Google Scholar 

  • Danks HV (2006) Insect adaptations to cold and changing environments. Canadian Entomol 138:1–23

    Article  Google Scholar 

  • Dautel H (1999) Water loss and metabolic water in starving Argas reflexus (Acari: Argasidae) nymphs. J Insect Physiol 45:55–63

    Article  CAS  PubMed  Google Scholar 

  • Denlinger DL (1986) Dormancy in tropical insects. Ann Rev Entomol 31:239–264

    Article  CAS  Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    Article  CAS  PubMed  Google Scholar 

  • de Renobales M, Nelson DR, Blomquist GJ (1991) Cuticular lipids. In: Binnington K, Retnakaran A (eds) The physiology of the insect epidermis. CSIRO, Australia, pp 240–251

    Google Scholar 

  • Edney EB (1977) Water balance in land arthropods. Spinger, Berlin

    Google Scholar 

  • Elnitsky MA, Hayward SAL, Rinehart JP, Denlinger DL, Lee RE Jr (2008) Cryoprotective dehydration and resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. J Exp Biol 211:524–530

    Article  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Folk DG, Han C, Bradley TJ (2001) Water acquisition and portioning in Drosophila melanogaster: effects of selection for desiccation-resistance. J Exp Biol 204:3233–3331

    Google Scholar 

  • França MB, Panek AD, Eleutherio ECA (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A 146:621–631

    Article  CAS  Google Scholar 

  • Gäde G (2004) Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu Rev Entomol 49:93–113

    Article  PubMed  CAS  Google Scholar 

  • Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482

    CAS  Google Scholar 

  • Gibbs AG (2002a) Water balance in desert Drosophila: lessons from non-charismatic microfauna. Comp Biochem Physiol A 133:781–789

    Article  Google Scholar 

  • Gibbs AG (2002b) Lipid melting and cuticular permeability: new insights into an old problem. J Insect Physiol 48:391–400

    Article  CAS  PubMed  Google Scholar 

  • Gibbs AG, Matzkin LM (2001) Evolution of water balance in the genus Drosophila. J Exp Biol 204:2331–2338

    CAS  PubMed  Google Scholar 

  • Gibbs AG, Mousseau TA (1994) Thermal acclimation and genetic variation in cuticular lipids of the lesser migratory grasshopper (Melanoplus sanguinipes): effects of lipid composition on biophysiocal properties. Physiol Zool 67:1523–1543

    CAS  Google Scholar 

  • Gibbs AG, Chippindale AK, Rose MR (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J Exp Biol 200:1821–1832

    CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Browne JA, Burnell AM, Tunnacliffe A (2005) Molecular anhydrobiology: identifying molecules implicated in invertebrates anhydrobiosis. Integr Comp Biol 45:702–709

    Article  CAS  Google Scholar 

  • Hadley NF (1977) Epicuticular lipids of the desert tenebrionid beetle, Eleodes armata: Seasonal and acclimatory effects on chemical composition. Insect Biochem 7:277–283

    Article  CAS  Google Scholar 

  • Hadley NF (1981) Cuticular lipids of terrestrial plants and arthropods: a comparison of their structure, composition, and wateproofing functions. Biol Rev Camb Philos Soc 56:23–47

    Article  CAS  Google Scholar 

  • Hadley NF (1994) Water relations of terrestrial arthropods. Academic, New York

    Google Scholar 

  • Hayward SAL, Rinehart JP, Denlinger DL (2004) Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae. J Exp Biol 207:963–971

    Article  CAS  PubMed  Google Scholar 

  • Hepburn HR (1985) The integument. In: Blum MS (ed) Fundamentals of insect physiology. Wiley, New York, pp 139–183

    Google Scholar 

  • Holmstrup M, Hedlund K, Boriss H (2002) Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. J Insect Physiol 48:961–970

    Article  CAS  PubMed  Google Scholar 

  • Hood WG, Tschinkel WR (1990) Desiccation resistance in arboreal and terrestrial ants. Physiol Entomol 15:23–35

    Article  Google Scholar 

  • Ignatova Z, Gierasch LM (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA 103:13357–13361

    Article  CAS  PubMed  Google Scholar 

  • Jinda M, Sehnal F (1990) Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochem 20:389–395

    Article  Google Scholar 

  • Kashima T, Nakamura T, Tojo S (2006) Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. J Insect Physiol 52:816–825

    Article  CAS  PubMed  Google Scholar 

  • Kikawada T, Minakawa N, Watanabe M, Okuda T (2005) Factors inducing successful anhydrobiosis in the African chironomid Polypedilum vanderplanki: significance of the larval tubular nest. Integr Comp Biol 45:710–714

    Article  Google Scholar 

  • Kikawada T, Saito A, Kanamori Y, Fujita M, S`nigórska K, Watanabe M, Okuda T (2008) Dehydration-inducible changes in the expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki. Biochim Biophys Acta 1778:514–520

    Article  CAS  PubMed  Google Scholar 

  • Knülle W (1984) Water vapour uptake in mites and insect: an ecophysiological and evoluntionary perspective. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 1. Ellis Horwood Ltd, Chichester, pp 71–82

    Google Scholar 

  • Koštál V (2006) Eco-physiolgocial phases of insect diapause. J Insect Physiol 52:113–127

    Article  PubMed  CAS  Google Scholar 

  • Koštál V, Šimek P (1996) Biochemistry and physiology of aestivo-hibernation in the adult apple blossom weevil, Anthonomus pomorum (Coleoptera: Curculionidae). J Insect Physiol 42:727–733

    Article  Google Scholar 

  • Koštál V, Sula J, Simek P (1997) Physiology of drought tolerance and cold hardiness of the Mediterranean tiger moth Cymbalophora pudica during summer diapause. J Insect Physiol 44:165–173

    Article  Google Scholar 

  • Koštál V, Berková P, Šimek P (2003) Remodelling of membrane phospholipids duirng transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). J Insect Physiol 135:407–419

    Google Scholar 

  • Krysan JL, Branson TF, Castro G (1977) Diapause in Diabrotica virgifera (Coleoptera: Chrysomelidae): a comparison of eggs from temperature and subtropical climate. Entomol Exp Appl 22:81–89

    Article  Google Scholar 

  • Lehmann F-O (2001) Matching spiracle opening to metabolic need during flight in Drosophila. Science 294:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Li A, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2009) Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration. Proteomics 9:2788–2797

    Google Scholar 

  • Lighton JRB, Garrigan DA, Duncan FD, Jonson RA (1993) Spiracular control of respiratory water loss in female alates of the harvester ant Pogonomyrmex rugosus. J Exp Biol 179:233–244

    Google Scholar 

  • Lighton JRB (1996) Discontinuous gas exchange in insects. Annu Rev Entomol 41:309–324

    Article  CAS  PubMed  Google Scholar 

  • Lockey KH (1988) Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol B 89B:595–645

    Article  CAS  Google Scholar 

  • Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE Jr, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase, and heat shock proteins. Insect Biochem Mol Biol 38:796–804

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE Jr, Denlinger DL (2009) Dehydration, rehydration and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol B 179:481–491

    Google Scholar 

  • Loveridge JP, Bursell E (1975) Studies on the water relations of adult locusts (Orthoptera: Acrididae). I. Respiration and the production of metabolic water. Bull Entomol Res 65:13–20

    Article  Google Scholar 

  • Machin J, Lampert GJ (1987) An improved water content model for Periplaneta cuticle: effects of epidermis removal and cuticle damage. J Insect Physiol 33:647–655

    Article  Google Scholar 

  • Masaki S (1980) Summer diapause. Annu Rev Entomol 25:1–25

    Article  Google Scholar 

  • Michaud MR, Denlinger DL (2006) Oleic acid is elevated in cell membranes duirng rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 52:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Michaud MR, Denlinger DL (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in the flesh flies (Sarcophaga crassipalpis): a metabolic comparison. J Comp Physiol B 177:753–763

    Article  CAS  PubMed  Google Scholar 

  • Michaud MR, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2008) Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing, and desiccation in the Antarctic midge, Belgica antarctica. J Insect Physiol 54:645–655

    Article  CAS  Google Scholar 

  • Noble-Nesbitt J (1991) Cuticular permeability and its control. In: Binnington K, Retnakaran A (eds) The Physiology of the insect epidermis. CSIRO, Melbourne, Australia, pp 282–283

    Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerabce: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Pires CSS, Sujii ER, Fontes EMG, Tauber CA, Tauber MJ (2000) Dry-season embryonic dormancy in Deois flavopicta (Homoptera: Cercopidae): role of temperature and moisture in nature. Environ Entomol 29:714–720

    Article  Google Scholar 

  • Pugh PJA, King PE, Fordy MR (1988) The spiracle of Ixodes ricinus (L.) (Ixodidae: Metastigmata: Acarina): A passive diffusion barrier for water vapour. Zool J Linn Soc 221:63–75

    Google Scholar 

  • Reuner A, Brümmer F, Schill RO (2008) Heat shock proteins (Hsp70) and water content in the estivating Mediterranean grunt snail (Cantareus apertus). Comp Biochem Physiol B 151:28–31

    Article  PubMed  CAS  Google Scholar 

  • Riehle MA, Garczynski SF, Crim JW, Hill CA, Brown MR (2002) Neuropeptides and peptide hormones in Anopheles gambiae. Science 298:172–175

    Article  CAS  PubMed  Google Scholar 

  • Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SAL, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci USA 104:11130–11137

    Article  CAS  PubMed  Google Scholar 

  • Roberts D (2004) Prolonged survival of eggs of the rock-pool mosquito, Aedes vittatus, in the extreme heat of the Arabian peninsula. J Arid Environ 57:63–70

    Article  Google Scholar 

  • Roubik DW, Michener CD (1980) The seasonal cycle and nests of Epicharis zonata, a bee whose cells are below the wet-season water table (Hymenoptera, Anthophoridae). Biotropica 12:56–60

    Article  Google Scholar 

  • Rourke BC, Gibbs AG (1999) Effects of lipid phase transitions on the cuticular permeability: model membrane and in situ studies. J Exp Biol 202:3255–3262

    PubMed  Google Scholar 

  • Sasaki T, Kawanura M, Ishikawa H (1996) Nitrogen recycling in the brown planthopper, Nilaparvata lugens: involvement of yeast-like endosymbionts in uric acid metabolism. J Insect Physiol 42:125–129

    Article  CAS  Google Scholar 

  • Sinclair BJ, Gibbs AG, Roberts SP (2007) Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Mol Biol 16:435–443

    Article  CAS  PubMed  Google Scholar 

  • Sláma K (1999) Active regulation of insect respiration. Ann Entomol Soc Amer 92:916–929

    Google Scholar 

  • Sota T, Mogi M (1992) Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomol Exp Appl 63:155–161

    Article  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of aestivation. Comp Biochem Physiol A 133:733–754

    Article  Google Scholar 

  • Storey KB (2004) Biochemical adaptation. In: Storey KB (ed) Functional Metabolism: regulation and adaptation. Wiley, Cambridge, pp 383–413

    Chapter  Google Scholar 

  • Suemoto T, Kawai K, Imabayashi H (2004) A comparison of desiccation tolerance among 12 species of chironomid larvae. Hydrobiologia 515:107–114

    Article  Google Scholar 

  • Tammariello SP, Rinehart JP, Denlinger DL (1999) Desiccation elicits heat shock protein transcription in the flesh fly, Sacrophaga crassipalpis, but does not enhance tolerance to high or low temperature. J Insect Physiol 45:933–938

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S (2000) The role of moisture in the control of diapause, mating and aggregation in a tropical insect. Entomol Sci 3:147–155

    Google Scholar 

  • Tomčala A, Tollarová M, Overgaard J, Šimek P, Koštál V (2006) Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. J Exp Biol 209:4102–4114

    Article  PubMed  CAS  Google Scholar 

  • Toolson EC (1978) Diffusion of water through the arthropod cuticle: thermodynamic consideration of the transition phenomenon. J Therm Biol 3:69–73

    Article  Google Scholar 

  • Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31

    Article  CAS  Google Scholar 

  • Wharton GW (1985) Water balance of insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Pergamon, Oxford, pp 565–603

    Google Scholar 

  • Willmer PG (1980) The effects of fluctuating environments on the water relations of larval Lepidoptera. Ecol Entomol 5:271–292

    Article  Google Scholar 

  • Wolda H (1988) Insect seasonality: why? Annu Rev Entomol 19:1–18

    Google Scholar 

  • Wolda H, Denlinger DL (1984) Diapause in large aggregations of a tropical beetle. Ecol Entomol 9:217–230

    Article  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Denlinger DL (1991) Water balance in the flesh fly pupae and water vapor absorption associated with diapause. J Exp Biol 157:273–286

    Google Scholar 

  • Yoder JA, Denlinger DL (1992) Water vapor uptake by diapausing eggs of a tropical walking stick. Physiol Entomol 17:97–103

    Article  Google Scholar 

  • Yoder JA, Denlinger DL, Dennis MW, Kolattukudy PE (1992) Enhancement of diapausing flesh fly puparia with additional hydrocarbons and evidence for alkane biosynthesis by a decarbonylation mechanism. Insect Biochem Mol Biol 22:237–243

    Article  CAS  Google Scholar 

  • Yoder JA, Denlinger DL, Wolda H (1993) Aggregation promotes water conservation duirng diapause in the tropical fungus, Beetle, Stenotarsus rotundus. Entomol Exp Appl 63:203–205

    Article  Google Scholar 

  • Yoder JA, Rivers DB, Denlinger DL (1994) Water relationships in the ectoparasitoid Nasonia vitripennis during larval diapause. Physiol Entomol 19:373–378

    Article  Google Scholar 

  • Yoder JA, Benoit JB, Opaluch AM (2004) Water relations in eggs of the lone star tick, Amblyomma americanum, with experimental work on the capacity for water vapor absorption. Exp Appl Acarol 33:235–242

    Article  PubMed  Google Scholar 

  • Yoder JA, Benoit JB, Ark JT, Rellinger EJ (2005a) Temperature-induced alterations of cuticular lipids are not required for transition phenomenon in ticks. Int J Acarol 31:175–181

    Article  Google Scholar 

  • Yoder JA, Benoit JB, Rellinger EJ, Ark JT (2005b) Letter to the Editors: critical transition temperature and activation energy with implications for arthropod cuticular permeability. J Insect Physiol 51:1063–1065

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Benoit JB, Denlinger DL, Rivers DB (2006) Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J Insect Physiol 52:202–214

    Article  CAS  PubMed  Google Scholar 

  • Zachariassen KE, Einarson S (1993) Regulation of body fluid compartments during dehydration of the tenebrionid beetle Rhytinota praelonga. J Exp Biol 182:283–289

    Google Scholar 

  • Zachariassen KE, Pedersen SA (2002) Volume regulation during dehydration of desert beetles. Comp Biochem Physiol A 133:805–811

    Article  Google Scholar 

Download references

Acknowledgments

I greatly appreciate comments from David L. Denlinger (The Ohio State University) on my chapter. While writing, I was supported by Mary S. Muelhaput Endowed Presidential Fellowship from The Ohio State University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua B. Benoit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benoit, J.B. (2010). Water Management by Dormant Insects: Comparisons Between Dehydration Resistance During Summer Aestivation and Winter Diapause. In: Arturo Navas, C., Carvalho, J. (eds) Aestivation. Progress in Molecular and Subcellular Biology, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02421-4_10

Download citation

Publish with us

Policies and ethics