Skip to main content

Clustering Hierarchical Data Using Self-Organizing Map: A Graph-Theoretical Approach

  • Conference paper
Advances in Self-Organizing Maps (WSOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5629))

Included in the following conference series:

Abstract

The application of Self-Organizing Map (SOM) to hierarchical data remains an open issue, because such data lack inherent quantitative information. Past studies have suggested binary encoding and Generalizing SOM as techniques that transform hierarchical data into numerical attributes. Based on graph theory, this paper puts forward a novel approach that processes hierarchical data into a numerical representation for SOM-based clustering. The paper validates the proposed graph-theoretical approach via complexity theory and experiments on real-life data. The results suggest that the graph-theoretical approach has lower algorithmic complexity than Generalizing SOM, and can yield SOM having significantly higher cluster validity than binary encoding does. Thus, the graph-theoretical approach can form a data-preprocessing step that extends SOM to the domain of hierarchical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  2. Vesanto, J.: Data Exploration Process Based on the Self-Organizing Map. Doctoral dissertation, Helsinki University of Technology, Espoo, Finland (May 2002)

    Google Scholar 

  3. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: Som-pak: The self-organizing map program package. Technical Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland (1996)

    Google Scholar 

  4. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21(1-3), 19–30 (1998)

    Article  MATH  Google Scholar 

  5. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings with application to speech recognition. In: Proceedings of the First International Workshop on Self-Organizing Maps (WSOM 1997), pp. 2–7 (1997)

    Google Scholar 

  6. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15(8-9), 945–952 (2002)

    Article  Google Scholar 

  7. Somervuo, P.J.: Online algorithm for the self-organizing map of symbol strings. Neural Networks 17(8-9), 1231–1239 (2004)

    Article  Google Scholar 

  8. Hsu, C.C.: Generalizing self-organizing map for categorical data. IEEE Transactions on Neural Networks 17(2), 294–304 (2006)

    Article  Google Scholar 

  9. Asuncion, A., Newman, D.: UCI Machine Learning Repository. School of Information and Computer Sciences, University of California, Irvine (2007), http://archive.ics.uci.edu/ml/datasets/Zoo

    Google Scholar 

  10. Jungnickel, D.: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, vol. 5. Springer, Berlin (English edition, 2002)

    Google Scholar 

  11. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice Hall International, Upper Saddle River (1999)

    MATH  Google Scholar 

  12. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Som toolbox for matlab 5. Technical Report A57, SOM Toolbox Team, Helsinki University of Technology, Espoo, Finland (2000)

    Google Scholar 

  13. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 224–227 (1979)

    Article  Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  15. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common ancestors in directed acyclic graphs. Theoretical Computer Science 380, 37–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maimon, O., Rokash, L. (eds.): The Data Mining and Knowledge Discovery Handbook, 1st edn. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Argyrou, A. (2009). Clustering Hierarchical Data Using Self-Organizing Map: A Graph-Theoretical Approach. In: Príncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02397-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02396-5

  • Online ISBN: 978-3-642-02397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics