Skip to main content

Abstract

The control of pollen fertility is central to the production of F1-hybrid seed in self-pollinating crops, and is potentially applicable to the containment of transgenes deployed in crop plants. Pollen sterility can be achieved through cytoplasmic male sterility (CMS) encoded by the plant mitochondrial genome, or through genic male sterility encoded by the nuclear genome. Both routes have been exploited in schemes for hybrid seed production. Recently, pollen sterility has been achieved through novel strategies involving nuclear or plastid transgenes. Here we review the applications of pollen sterility, and the genetic systems used for the control of pollen fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad AR, Mehrtens BJ, Mackenzie SA (1995) Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell 7:271–285

    PubMed  CAS  Google Scholar 

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 13:5968–5973

    Google Scholar 

  • Adugna A, Nanda GS, Singh K, Bains NS (2004) A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica 135:297–304

    Google Scholar 

  • Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T (2004) Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet 108:1449–1457

    PubMed  CAS  Google Scholar 

  • Al-Ahmad H, Gressel J (2005) Transgene containment using cytokinin-reversible male sterility in constitutive, gibberellic acid-insensitive (Δgai) transgenic tobacco. J Plant Growth Regul 24:19–27

    CAS  Google Scholar 

  • Atanassova B (2007) Genic male sterility and its application in tomato (Lycopersicon esculentum Mill.) hybrid breeding and hybrid seed production. Acta Hort 729:45–51

    Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    PubMed  CAS  Google Scholar 

  • Benito Moreno R, Macke F, Hauser M, Alwen A, Heberle-Bors E (1988) Sporophytes and male gametophytes from in vitro cultured, immature tobacco pollen. In: Cresti M, Jori P, Pacini E (eds) Sexual reproduction in higher plants. Springer, Berlin Heidelberg New York, pp 137–142

    Google Scholar 

  • Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    PubMed  CAS  Google Scholar 

  • Bisht NC, Jagannath A, Gupta V, Burma PK, Pental D (2004) A two gene-two promoter system for enhanced expression of a restorer gene (barstar) and development of improved fertility restorer lines for hybrid seed production in crop plants. Mol Breed 14:120–144

    Google Scholar 

  • Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70:231–239

    CAS  Google Scholar 

  • Brown GG, Formanova N, Jin H, Warzachuk R, Dandy C, Pati P, Leforest M, Zhang J, Cheung W, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    PubMed  CAS  Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomics 3:75–100

    Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci Paris 324:543–550

    PubMed  CAS  Google Scholar 

  • Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    PubMed  CAS  Google Scholar 

  • Carlsson J, Leino M, Sohlberg J, Sundström JF, Glimelius K (2008) Mitochondrial regulation of flower development. Mitochondrion 8:74–86

    PubMed  CAS  Google Scholar 

  • Chandra-Shekara AC, Prasanna BM, Singh BB, Unnikrishnan KV, Seetharam A (2007) Effect of cytoplasm and cytoplasm-nuclear interaction on combining ability and heterosis for agronomic traits in pearl millet [Pennisetum glaucum (L) Br. R]. Euphytica 153:15–26

    Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443

    PubMed  CAS  Google Scholar 

  • Chase CD (1994) Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L. Curr Genet 25:245–251

    PubMed  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90

    PubMed  CAS  Google Scholar 

  • Chaudhury AM (1993) Nuclear genes controlling male fertility. Plant Cell 5:1277–1283

    PubMed  Google Scholar 

  • Cheng S-H, Zhuang J-Y, Fan Y-Y, Du J-H, Cao L-Y (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966

    PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    PubMed  CAS  Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336

    PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnol 20:581–586

    CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 5:238–245

    Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647

    PubMed  CAS  Google Scholar 

  • Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep 4:588–594

    PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings III CS (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84:5374–5378

    PubMed  CAS  Google Scholar 

  • Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180

    PubMed  CAS  Google Scholar 

  • Duvick DN (1959) The use of cytoplasmic male-sterility in hybrid seed production. Econ Bot 13:167–195

    Google Scholar 

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nature Rev Genet 2:69–74

    PubMed  CAS  Google Scholar 

  • Feil B, Weingartner U, Stamp P (2003) Controlling release of pollen from genetically modified maize and increasing its grain yield by growing mixtures of male-sterile and male-fertile plants. Euphytica 130:163–165

    CAS  Google Scholar 

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    CAS  Google Scholar 

  • Flavell RB (1974) A model for the mechanism of cytoplasmic male sterility with special reference to maize. Plant Sci Lett 3:259–263

    Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    PubMed  CAS  Google Scholar 

  • Geddy R, Brown GG (2007) Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics 8:130–142

    PubMed  Google Scholar 

  • Geddy R, Mahé L, Brown GG (2005) Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter. Plant J 41:333–345

    PubMed  CAS  Google Scholar 

  • Gils M, Marillonnet S, Werner S, Grutzner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y (2008) A novel hybrid seed system for plants. Plant Biotechnol J 6:226–235

    PubMed  CAS  Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Design of safe and biologically contained transgenic plants: tools and technologies for controlled transgene flow and expression. Biotechnol Genet Eng Rev 21:325–367

    PubMed  Google Scholar 

  • Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    PubMed  CAS  Google Scholar 

  • Goldberg A, Confino-Cohen R, Waisel Y (1998) Allergic responses to pollen of ornamental plants: high incidence in the general atopic population and especially among flower growers. J Allergy Clin Immunol 102:210–214

    PubMed  CAS  Google Scholar 

  • Guerineau F, Sorensen AM, Fenby N, Scott RJ (2003) Temperature sensitive diphtheria toxin confers conditional male-sterility in Arabidopsis thaliana. Plant Biotechnol J 1:33–42

    PubMed  CAS  Google Scholar 

  • Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer, Berlin Heidelberg New York, pp 93–114

    Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    PubMed  CAS  Google Scholar 

  • Hattori M, Miyake H, Sugita M (2007) A Pentatricopeptide repeat protein is required for RNA processing of clpP Pre-mRNA in moss chloroplasts. J Biol Chem 282:10773–10782

    PubMed  CAS  Google Scholar 

  • Havey M(2004) The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer, Berlin Heidelberg New York, pp 623–634

    Google Scholar 

  • Horner H, Palmer R (1995) Mechanisms of genic male sterility. Crop Sci 35:1527–1535

    Google Scholar 

  • Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282

    PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  • Ishimaru K, Takada K, Watanabe S, Kamada H, Ezura H (2006) Stable male sterility induced by the expression of mutated melon ethylene receptor genes in Nicotiana tabacum. Plant Sci 171:355–359

    CAS  Google Scholar 

  • Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225–230

    PubMed  CAS  Google Scholar 

  • Kaul MLH (1988) Male sterility in higher plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kazama T, Toriyama K (2003) A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett 544:99–102

    PubMed  CAS  Google Scholar 

  • Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012

    PubMed  CAS  Google Scholar 

  • Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415

    PubMed  CAS  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:201–1224

    Google Scholar 

  • Komori T, Ohta S, Murai N, Takakura, Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N (2004) Map-based cloning of a fertility restorer gene, Rf-1 in rice (Oryza sativa L.). Plant J 37:315–325

    PubMed  CAS  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    PubMed  CAS  Google Scholar 

  • Kriete G, Niehaus K, Perlick AM, Puhler A, Broer I (1996) Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-L-phosphinothricin. Plant J 9:809–818

    PubMed  CAS  Google Scholar 

  • Krishnasamy S, Makaroff CA (1994) Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. Plant Mol Biol 26:935–946

    PubMed  CAS  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nature Rev Genet 6:688–698

    PubMed  CAS  Google Scholar 

  • Ku SJ, Cho KH, Choi YJ, Baek WK, Kim S, Su HS, Chung YY (2001) Cytological observation of two environmental genic male-sterile lines of rice. Mol Cells 12:403–406

    PubMed  CAS  Google Scholar 

  • Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14

    PubMed  CAS  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nature Rev Mol Cell Biol 5:305–315

    CAS  Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38:425–454

    Google Scholar 

  • Laver H, Reynolds SJ, Monéger F, Leaver CJ (1991) Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J 1:185–193

    PubMed  CAS  Google Scholar 

  • Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24:109–114

    PubMed  Google Scholar 

  • Li S, Yang D, Zhu Y (2007) Characterization and use of male sterility in hybrid rice breeding. J Integr Biol 49:791–804

    CAS  Google Scholar 

  • Li SF, Iacuone S, Parish RW (2007) Suppression and restoration of male fertility using a transcription factor. Plant Biotechnol J 5:297–312

    PubMed  CAS  Google Scholar 

  • Linke B, Borner T (2005) Mitochondrial effects on flower and pollen development. Mitochondrion 5:389–402

    PubMed  CAS  Google Scholar 

  • Linke B, Nothnagel T, Börner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37

    PubMed  CAS  Google Scholar 

  • Liu Z, Liu Z (2008) The second intron of AGAMOUS drives carpel- and stamen-specific expression sufficient to induce complete sterility in Arabidopsis. Plant Cell Rep 27(5):855–863

    PubMed  Google Scholar 

  • Liu F, Cui X, Horner HT, Weiner H, Schnable PS (2001) Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell 13:1063–1078

    PubMed  CAS  Google Scholar 

  • Liu CW, Lin CC, Chen JJ, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    PubMed  CAS  Google Scholar 

  • Liu X, Wang S, Wang Y, Wei S (2007) Genetic analysis and molecular mapping of a nuclear recessive male sterility gene, ms91(t), in rice. Genome 50:796–801

    PubMed  CAS  Google Scholar 

  • Logan DC (2006) Plant mitochondrial dynamics. Biochim Biophys Acta 1763:430–441

    PubMed  CAS  Google Scholar 

  • Lu G, Yang G, Fu T (2004) Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant Breed 123:262–265

    CAS  Google Scholar 

  • Luo H, Kausch AP, Hu Q, Nelson K, Wipff JK, Fricker CCR, Owen TP, Moreno MA, Lee JY, Hodges TK (2005) Controlling transgene escape in GM creeping bentgrass. Mol Breed 16:185–188

    Google Scholar 

  • Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small IC (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    PubMed  CAS  Google Scholar 

  • Mahillon V, Saussez S, Michel O (2006) High incidence of sensitization to ornamental plants in allergic rhinitis. Allergy 61:1138–1140

    PubMed  CAS  Google Scholar 

  • Mariani C, de Beuckeleer M, Truttner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    CAS  Google Scholar 

  • Mariani C, Gossele V, de Beuckeleer M, de Block M, Goldberg RB, de Greef W, Leemans J (1992) A chimaeric ribonuclease inhibitor gene restores fertility to male-sterile plants. Nature 257:384–387

    Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    PubMed  CAS  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16 Suppl:S142–S153

    PubMed  CAS  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    PubMed  CAS  Google Scholar 

  • Moneger F, Smart SJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J 13:8–17

    PubMed  CAS  Google Scholar 

  • Moran JL, Rooney WL (2003) Effect of cytoplasm on the agronomic performance of grain sorghum hybrids. Crop Sci 43:777–781

    Google Scholar 

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistilloidy, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J 29:169–181

    PubMed  Google Scholar 

  • Napoli CA, Fahy D, Wang HY, Taylor LP (1999) white anther: a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622

    PubMed  CAS  Google Scholar 

  • Nawaz-ul-Rehman MS, Mansoor S, Khan AA, Zafar Y, Briddon RW (2007) RNAi-mediated male sterility of tobacco by silencing TA29. Mol Biotechnol 36:159–165

    PubMed  CAS  Google Scholar 

  • Nivison HT, Hanson MR (1989) Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia. Plant Cell 1:1121–1130

    PubMed  CAS  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    PubMed  CAS  Google Scholar 

  • Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183

    PubMed  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637–646

    PubMed  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    PubMed  Google Scholar 

  • Pelletier G, Budar F (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr Opin Biotechnol 18:121–125

    PubMed  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7:199–203

    PubMed  CAS  Google Scholar 

  • Pla M, Mathieu C, De Paepe R, Chetrit P, Vedel F (1995) Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant. Mol Gen Genet 248:79–88

    PubMed  CAS  Google Scholar 

  • Possingham JV (1998) Fruit and vegetable quality in the 21st century - the influence of Japan. J Japan Soc Hort Sci 67:1250–1254

    Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995

    PubMed  CAS  Google Scholar 

  • Pring DR, Lonsdale DM (1989) Cytoplasmic male sterility and maternal inheritance of disease susceptibility in maize. Annu Rev Phytopathol 27:483–502

    Google Scholar 

  • Pring DR, Tang HV, Howad W, Kempken F (1999) A unique two-gene gametophytic male sterility system in sorghum involving a possible role of RNA editing in fertility restoration. J Hered 90:386–393

    PubMed  CAS  Google Scholar 

  • Pruitt KD, Hanson MR (1991) Transcription of the Petunia mitochondria CMS-associated PCF locus in male sterile and fertility-restored lines. Mol Gen Genet 227:348–355

    PubMed  CAS  Google Scholar 

  • Rasmusson, AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu Rev Plant Biol 55:23–39

    PubMed  CAS  Google Scholar 

  • Ray K, Bisht N, Pental D, Burma PK (2007) Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide ‘Pursuit’. Curr Sci 93:1390–1396

    CAS  Google Scholar 

  • Reynaerts A, Van de Wiele H, De Sutter G, Janssens J (1993) Engineered genes for fertility control and their application in hybrid seed production. Sci Hort 55:125–139

    CAS  Google Scholar 

  • Rhoades DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194

    Google Scholar 

  • Ribarits A, Mamun AN, Li S, Resch T, Fiers M, Heberle-Bors E, Liu CM, Touraev A (2007) Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol J 5:483–494

    PubMed  CAS  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315

    PubMed  CAS  Google Scholar 

  • Rubinstein B (2000) Regulation of cell death in flower petals. Plant Mol Biol 44:303–318

    PubMed  CAS  Google Scholar 

  • Ruiz O, Daniell H (2005) Cytoplasmic male sterility engineered via the plastid genome. Plant Physiol 138:1232–1246

    PubMed  CAS  Google Scholar 

  • Sabar M, Gagliardi D, Balk J, Leaver CJ (2003) ORFB is a subunit of F1F0-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep 4:381–386

    PubMed  CAS  Google Scholar 

  • Sandhu AP, Abdelnoor RV, Mackenzie SA (2007) Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl Acad Sci USA 104:1766–1770

    PubMed  CAS  Google Scholar 

  • Sarria R, Janska H, Arrieta-Montiel M, Lyznik A, Mackenzie SA (1999) Two nuclear-directed means of suppressing a dominant mitochondrial mutation in common bean. J Hered 90:357–361

    CAS  Google Scholar 

  • Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5' region of mRNAs whose translation it activates. Plant Cell 17:2791–2804

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663

    PubMed  CAS  Google Scholar 

  • Schnable P, Wise R (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16 Suppl:S46–S60

    CAS  Google Scholar 

  • Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci 63:698–708

    PubMed  CAS  Google Scholar 

  • Smith B, Crowther T (1995) Inbreeding depression and single cross hybrids in leeks (Allium ampeloprasum ssp. porrum). Euphytica 86:87–94

    Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    PubMed  CAS  Google Scholar 

  • Stamp P, Chowchond S, Menzi M, Weingartner U, Kaeser O (2000) Increase in the yield of cytoplasmic male sterile maize revisited. Crop Sci 40:1586–1587

    Google Scholar 

  • Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519–528

    PubMed  CAS  Google Scholar 

  • Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301

    PubMed  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    PubMed  CAS  Google Scholar 

  • Taylor L, Jorgensen R (1992) Conditional male fertility in chalcone synthase-deficient petunia. J Hered 83:11–17

    CAS  Google Scholar 

  • Teixeira RT, Farbos I, Glimelius K (2005) Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J 42:731–742

    PubMed  CAS  Google Scholar 

  • Touraev A, Heberle-Bors E (1999) Microspore embryogenesis and in vitro pollen maturation in tobacco. Methods Mol Biol 111:281–291

    PubMed  CAS  Google Scholar 

  • Touzet P, Budar F(2004) Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility. Trends Plant Sci 19:568–570

    Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Google Scholar 

  • Tupý J, Rcaronihová L, Zcaronárský V (1991) Production of fertile tobacco pollen from microspores in suspension culture and its storage for in situ pollination. Sex Plant Reprod 4:284–287

    Google Scholar 

  • van der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262

    PubMed  Google Scholar 

  • Virmani SS, Sun ZX, Mou TM, Jauhar Ali A, Mao CX (2003) Two-line hybrid rice breeding manual. International Rice Research Institute, Los Banos, Philippines

    Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu YG (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    PubMed  CAS  Google Scholar 

  • Warmke HE, Lee S-LJ (1977) Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. J Hered 68:213–222

    Google Scholar 

  • Warmke HE, Lee S-LJ (1978) Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science 200:561–562

    PubMed  CAS  Google Scholar 

  • Weingartner U, Prest TJ, Camp KH, Stamp P (2002a) The plus-hybrid system: a method to increase grain yield by combined cytoplasmic male sterility and xenia. Maydica 47:127–134

    Google Scholar 

  • Weingartner U, Kaeser O, Long M, Stamp P (2002b) Combining cytoplasmic male sterility and xenix increases grain yield of maize hybrids. Crop Sci 42:1848–1856

    Google Scholar 

  • Williams M (1995) Genetic engineering for pollination control. Trends Biotechnol 13:344–349

    CAS  Google Scholar 

  • Wilson ZA, Yang C (2004) Plant gametogenesis: conservation and contrasts in development. Reproduction 128:483–492

    PubMed  CAS  Google Scholar 

  • Wise RP, Pring DR (2002) Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: light at the end of the tunnel? Proc Natl Acad Sci USA 99:10240–10242

    PubMed  CAS  Google Scholar 

  • Wise RP, Fliss AE, Pring DR, Gengenbach BG (1987) Urf13T of T cytoplasm maize mitochondria encodes a 13kD polypeptide. Plant Mol Biol 9:121–126

    CAS  Google Scholar 

  • Wise RP, Bronson CR, Schnable PS, Horner HT (1999) The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize. Adv Agron 65:79–130

    CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    PubMed  CAS  Google Scholar 

  • Yang XY, Li JG, Pei M, Gu H, Chen ZL, Qu LJ (2007) Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep 26:219–228

    PubMed  CAS  Google Scholar 

  • Ylstra B, Touraev A, Benito Moreno RM, Stöger E, Van Tunen AA, Vicente O, Mol JNM, Heberle-Bors E (1992) Flavonols stimulate development, germination and tube growth of tobacco pollen. Plant Physiol 100:902–907

    PubMed  CAS  Google Scholar 

  • Ylstra B, Busscher J, Franken J, Hollman P, Mol J, van Tunen A (1994) Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant J 6:201–212

    CAS  Google Scholar 

  • Yui R, Iketani S, Mikami T, Kubo T (2003) Antisense inhibition of mitochondrial pyruvate dehydrogenase E1 alpha subunit in anther tapetum causes male sterility. Plant J 34:57–66

    PubMed  CAS  Google Scholar 

  • Zabala G, Gabay-Laughnan S, Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147:847–850

    PubMed  CAS  Google Scholar 

  • Zubko MK (2004) Mitochondrial tuning fork in nuclear homeotic functions. Trends Plant Sci 9:61–64

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Chase laboratory research on CMS and fertility restoration is supported by the Florida Agricultural Experiment Station and by USDA Cooperative State Research, Education and Extension Service NRI grant numbers 2001-0534-10888 and 2005-35301-1570. Alexandra Ribarits and Erwin Heberle-Bors are at the Department of Plant Molecular Biology, Max F. Perutz Laboratories, Vienna, Austria. Their work on male sterility has been supported by the HYBTECH project No. QKL5-CT-1999-30902 of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Chase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chase, C.D., Ribarits, A., Heberle-Bors, E. (2010). Male Sterility. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02301-9_21

Download citation

Publish with us

Policies and ethics