Skip to main content

A Multi-scale Feature Based Optic Flow Method for 3D Cardiac Motion Estimation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Abstract

The dynamic behavior of the cardiac muscle is strongly dependent on heart diseases. Optic flow techniques are essential tools to assess and quantify the contraction of the cardiac walls. Most of the current methods however are restricted to the analysis of 2D MR-tagging image sequences: due to the complex twisting motion combined with longitudinal shortening, a 2D approach will always suffer from through-plane motion. In this paper we investigate a new 3D aperture-problem free optic flow method to study the cardiac motion by tracking stable multi-scale features such as maxima and minima on 3D tagged MR and sine-phase image volumes. We applied harmonic filtering in the Fourier domain to measure the phase. This removes the dependency of intensity changes of the tagging pattern over time due to T1 relaxation. The regular geometry, the size-changing patterns of the MR-tags stretching and compressing along with the tissue, and the phase- and sine-phase plots represent a suitable framework to extract robustly multi-scale landmark features. Experiments were performed on real and phantom data and the results revealed the reliability of the extracted vector field. Our new 3D multi-scale optic flow method is a promising technique for analyzing true 3D cardiac motion at voxel precision, and free of through-plane artifacts present in multiple-2D data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosamond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., Hailpern, S.M., Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M., Meigs, J., Moy, C., Nichol, G., O’Donnell, C., Roger, V., Sorlie, P., Steinberger, J., Thom, T., Wilson, M., Hong, Y.: American heart association statistics committee and stroke statistics subcommittee: heart disease and stroke statistics 2008 update. A report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 117, 2–122 (2008)

    Google Scholar 

  2. Rainwater, D.L., McMahan, C.A., Malcom, G.T., Scheer, W.D., Roheim, P.S., McGill, H.C., Strong, J.: Lipid and apolipoprotein predictors of atherosclerosis in youth. Arteriosclerosis, Thrombosis, and Vascular Biology 19, 753–761 (1999)

    Article  Google Scholar 

  3. McGill, H.C., McMahan, C.A., Zieske, A.W., Sloop, G.D., Walcott, J.V., Troxclair, D., Malcom, G.T., Tracy, R.E., Oalmann, M.C., Strong, J.P.: Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. Arteriosclerosis, Thrombosis, and Vascular Biology 20 (2000)

    Google Scholar 

  4. Horn, B.K.P., Shunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  5. Lucas, B., Kanade, T.: An iterative image registration technique with application to stereo vision. In: DARPA, Image Process., vol. 21, pp. 85–117 (1981)

    Google Scholar 

  6. Brox, B., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Bruhn, A., Weickert, J., Kohlberger, T., Schnoerr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision 70(3), 257–277 (2006)

    Article  Google Scholar 

  8. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  9. Dougherty, L., Asmuth, J., Blom, A., Axel, L., Kumar, R.: Validation of an optical flow method for tag displacement estimation. IEEE Transactions on Medical Imaging 18(4), 359–363 (1999)

    Article  Google Scholar 

  10. Florack, L., Niessen, W., Nielsen, M.: The intrinsic structure of optic flow incorporating measurements of duality. International Journal of Computer Vision 27(3), 263–286 (1998)

    Article  Google Scholar 

  11. Niessen, W., Duncan, J., ter Haar Romeny, B., Viergever, M.: Spatiotemporal analysis of left ventricular motion. In: Medical Imaging 1995, San Diego, pp. 192–203. SPIE (1995)

    Google Scholar 

  12. Niessen, W., Duncan, J., Nielsen, M.L.F., ter Haar Romeny, B., Viergever, M.: A multiscale approach to image sequence analysis. Computer Vision and Image Understanding 65(2), 259–268 (1997)

    Article  Google Scholar 

  13. Suinesiaputra, A., Florack, L., Westenberg, J., ter Haar Romeny, B., Reiber, J., Lelieveldt, B.: Optic flow computation from cardiac MR tagging using a multiscale differential method a comparative study with velocity encoded MRI. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 483–490. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. van Assen, H.C., Florack, L., Suinesiaputra, A., ter Haar Romeny, B.M., Westenberg, J.J.M.: Purely evidence based multi-scale cardiac tracking using optic flow. In: MICCAI 2007 workshop on Coputational Biomechanics for Medicine II, pp. 84–93 (2007)

    Google Scholar 

  15. Florack, L., van Assen, H.C.: Dense multiscale motion extraction from cardiac cine MR tagging using HARP technology. In: Mathematical Methods in Biomedical Image Analysis. Workshop of the ICCV (2007)

    Google Scholar 

  16. Barron, J.: Experience with 3D optical flow on gated mri cardiac datasets. In: Proceedings of the 1st Canadian Conference on Computer and Robot Vision, pp. 370–377. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  17. Pan, L., Prince, J., Lima, J., Arts, N.: Fast tracking of cardiac motion using 3D-HARP. IEEE transactions on Biomedical Engineering 52(8), 1425–1435 (2005)

    Article  Google Scholar 

  18. Sampath, S., Prince, J.: Automatic 3D tracking of cardiac material markers using slice-following and harmonic-phase MRI. Magnetic Resonance Imaging 25, 197–208 (2007)

    Article  Google Scholar 

  19. Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A., Sapiro, E.P.: Human heart: tagging with MR imaging a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988)

    Article  Google Scholar 

  20. Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171(3), 841–845 (1989)

    Article  Google Scholar 

  21. Fischer, S.E., McKinnon, G., Maier, S., Boesiger, P.: Improved myocardial tagging contrast. Magnetic Resonance in Medicine 30(2), 191–200 (1993)

    Article  Google Scholar 

  22. Osman, N.F., McVeigh, W.S., Prince, J.L.: Cardiac motion tracking using cine harmonic phase (harp) magnetic resonance imaging. Magnetic Resonance in Medicine 42(6), 1048–1060 (1999)

    Article  Google Scholar 

  23. Sampath, S., Derbyshire, J., Atalar, E., Osman, N., Prince, J.: Realtime imaging of two dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP MRI) pulse sequence. Magnetic Resonance in Medicine 50(1), 154–163 (2003)

    Article  Google Scholar 

  24. Gabor, D.: Theory of communication. J. IEE 93(26), 429–457 (1946)

    Google Scholar 

  25. Rutz, A., Ryf, S., Plein, S., Boesiger, P., Kozerke, S.: Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magnetic Resonance in Medicine 59(4), 755–763 (2008)

    Article  Google Scholar 

  26. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. ter Haar Romeny, B.M.: Front-End Vision and Multi- Scale Image Analysis: Multiscale Computer Vision Theory and Applications, written in Mathematica. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  28. Florack, L.: Image Structure. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  29. Lindeberg, T.: Scale-Space Theory in Computer Vision, 1st edn. The Springer Intern. Series in Engineering and Computer Science. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  30. Barron, J.L., Fleet, D.J., Beauchemin, S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  31. Ubbink, S., Bovendeerd, P., Delhaas, T., Arts, T., van de Vosse, F.: Towards model-based analysis of cardiac MR tagging data: relation between left ventricular shear strain and myofiber orientation. Medical Image Analysis 10, 632–641 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becciu, A., van Assen, H., Florack, L., Kozerke, S., Roode, V., ter Haar Romeny, B.M. (2009). A Multi-scale Feature Based Optic Flow Method for 3D Cardiac Motion Estimation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics