Skip to main content

Effects of Anisotropy and Transmural Heterogeneity on the T-Wave Polarity of Simulated Electrograms

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

Abstract

The major determinants of the T wave polarity in electrocardiograms (ECGs) are still a debated issue. The aim of this work is to investigate the effects of tissue anisotropy, cellular action potential duration (APD) heterogeneities and excitation wavefront shape on the T wave polarity in unipolar and bipolar ECGs, simulated in a conducting medium surrounding the cardiac tissue at some distance fom endo to epicardium. The study is based on three-dimensional anisotropic Monodomain simulations of the entire depolarization and repolarization phases of propagating action potentials in a parallelepipedal slab. The results show that the T wave of unipolar ECGs is positive at all sites explored and its shape and polarity are mainly determined by the anisotropy of the cardiac tissue, irrespective of cellular APD heterogeneities and shape of the excitation wavefront. On the other hand, bipolar ECGs are mainly affected by their isotropic component and their T wave turns out to be positive for single site stimulations in the presence of transmural APD heterogeneity, while it becomes always negative in case of multiple sites stimulation generating large activation wavefronts, regardless of the considered cellular APD heterogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. di Bernardo, D., Murray, A.: Computer model for study of cardiac repolarization. J. Cardiovasc. Electrophys. 11(8), 895–899 (2000)

    Article  Google Scholar 

  2. Boulakia, M., et al.: Towards the Numerical Simulation of Electrocardiograms. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 240–249. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Clements, J.C., et al.: Activation Dynamics in Anisotropic Cardiac Tissue via Decoupling. Ann. Biomed. Engrg. 32(7), 984–990 (2004)

    Article  Google Scholar 

  4. Colli Franzone, P., et al.: On the polyphasic character of simulated and experimental electrograms. Biomedizin. Tech. 46(2), 16–19 (2001)

    Article  Google Scholar 

  5. Colli Franzone, P., et al.: Anisotropic mechanism for multiphasic unipolar electrograms. Simulation studies and experimental recordings. Ann. Biomed. Engrg. 28, 1–17 (2000)

    Article  Google Scholar 

  6. Colli Franzone, P., et al.: Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci. 197(1), 35–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colli Franzone, P., et al.: Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study. Math. Biosci. 204(1), 132–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clayton, R.H., Holden, A.V.: Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. Progr. Biophys. Mol. Biol. 85(2–3), 473–499 (2004)

    Article  Google Scholar 

  9. Conrath, C.E., Opthof, T.: Ventricular repolarization: An overview of (patho)physiology, sympathetic effects and genetic aspects. Progr. Biophys. Mol. Biol. 92(3), 269–307 (2006)

    Article  Google Scholar 

  10. Fish, J.M., et al.: Epicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization - Implications for biventricular pacing. Circulation 109(17), 2136–2142 (2004)

    Article  Google Scholar 

  11. Franz, M.R., et al.: Monophasic action potential mapping in human subjects with normal electrocardiograms: direct evidence for the genesis of the T wave. Circulation 75, 379–386 (1987)

    Article  Google Scholar 

  12. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: A model study. Circ. Res. 90, 889–896 (2002)

    Article  Google Scholar 

  13. Huiskamp, G.: Simulation of depolarization in a membrane-equation-based model of the anisotropic ventricle. IEEE Trans. Biomed. Engrg. 45, 847–855 (1998)

    Article  Google Scholar 

  14. Janse, M., et al.: Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circulation 112, 1711–1718 (2005)

    Article  Google Scholar 

  15. Leon, L.J., Horacek, B.M.: Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements. J. Electrocardiol. 24(1), 1–15 (1991)

    Article  Google Scholar 

  16. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991)

    Article  Google Scholar 

  17. Simms Jr., H.D., Geselowitz, D.B.: Computation of Heart Surface Potentials Using the Surface Source Model. J. Cardiovasc. Electrophys. 6(7), 522–531 (1995)

    Article  Google Scholar 

  18. Taggart, P., et al.: Transmural repolarization in the left ventricle in humans during normoxia and ischaemia. Cardiovasc. Rer. 50(3), 454–462 (2001)

    Article  Google Scholar 

  19. van Oosterom, A.: Genesis of the T wave as based on an equivalent surface source model. J. Electrocard. 34, 217–227 (2001)

    Article  Google Scholar 

  20. Weiss, D.L., et al.: Modeling of heterogeneous electrophysiology in the human heart with respect of ECG genesis. Proceed. Comput. in Cardiol. 34, 49–52 (2007)

    Google Scholar 

  21. Yan, G.-X., Antzelevitch, C.: Cellular basis for the normal T wave and the electrocardiographic manifestations of the Long-QT syndrome. Circulation 98, 1928–1936 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Colli Franzone, P., Pavarino, L.F., Scacchi, S., Taccardi, B. (2009). Effects of Anisotropy and Transmural Heterogeneity on the T-Wave Polarity of Simulated Electrograms. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics