Skip to main content

Abstract

There has been considerable interest in the identification of structural properties of combinatorial problems that lead, directly or indirectly, to the development of efficient algorithms for solving them. One such concept is that of a backdoor set—a set of variables such that once they are instantiated, the remaining problem simplifies to a tractable form. While backdoor sets were originally defined to capture structure in decision problems with discrete variables, here we introduce a notion of backdoors that captures structure in optimization problems, which often have both discrete and continuous variables. We show that finding a feasible solution and proving optimality are characterized by backdoors of different kinds and size. Surprisingly, in certain mixed integer programming problems, proving optimality involves a smaller backdoor set than finding the optimal solution. We also show extensive results on the number of backdoors of various sizes in optimization problems. Overall, this work demonstrates that backdoors, appropriately generalized, are also effective in capturing problem structure in optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4), 1–12 (2006), http://miplib.zib.de

    Article  MathSciNet  Google Scholar 

  2. Bixby, R.E.: Solving real-world linear programs: A decade and more of progress. Oper. Res. 50(1), 3–15 (2002)

    Article  MathSciNet  Google Scholar 

  3. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Gent, I.P., Walsh, T.: Easy problems are sometimes hard. AI J. 70, 335–345 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Gomes, C.P., Selman, B., McAloon, K., Tretkoff, C.: Randomization in backtrack search: Exploiting heavy-tailed profiles for solving hard scheduling problems. In: 4th Int. Conf. Art. Intel. Planning Syst. (1998)

    Google Scholar 

  7. Hogg, T., Williams, C.: Expected gains from parallelizing constraint solving for hard problems. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI 1994), Seattle, WA, pp. 1310–1315. AAAI Press, Menlo Park (1994)

    Google Scholar 

  8. ILOG, SA. CPLEX 10.1 Reference Manual (2006)

    Google Scholar 

  9. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: 15th IJCAI, Nagoya, Japan, pp. 366–371 (August 1997)

    Google Scholar 

  10. Smith, B.M., Grant, S.A.: Sparse constraint graphs and exceptionally hard problems. In: 14th IJCAI, Montreal, Canada, vol. 1, pp. 646–654 (August 1995)

    Google Scholar 

  11. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: 18th IJCAI, Acapulco, Mexico, pp. 1173–1178 (August 2003)

    Google Scholar 

  12. Williams, R., Gomes, C., Selman, B.: On the connections between heavy-tails, backdoors, and restarts in combinatorial search. In: 6th SAT, Santa Margherita Ligure, Italy, pp. 222–230 (May 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dilkina, B., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M. (2009). Backdoors to Combinatorial Optimization: Feasibility and Optimality. In: van Hoeve, WJ., Hooker, J.N. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2009. Lecture Notes in Computer Science, vol 5547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01929-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01929-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01928-9

  • Online ISBN: 978-3-642-01929-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics