Skip to main content

Multiobjective Genetic Fuzzy Systems

  • Chapter
Computational Intelligence

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 1))

Abstract

In the design of fuzzy rule-based systems, we have two conflicting goals: One is accuracy maximization, and the other is complexity minimization (i.e., interpretability maximization). There exists a tradeoff relation between these two goals. That is, we cannot simultaneously achieve accuracy maximization and complexity minimization. Various approaches have been proposed to find accurate and interpretable fuzzy rule-based systems. In some approaches, these two goals are integrated into a single objective function which can be optimized by standard single-objective optimization techniques. In other approaches, accuracy maximization and complexity minimization are handled as different objectives in the framework of multiobjective optimization. Recently, multiobjective genetic algorithms have been used to search for a large number of non-dominated fuzzy rule-based systems along the accuracy-complexity tradeoff surface in some studies. These studies are often referred to as multiobjective genetic fuzzy systems. In this chapter, we first briefly explain the concept of accuracy-complexity tradeoff in the design of fuzzy rule-based systems. Next we explain various studies in multiobjective genetic fuzzy systems. Two basic ideas are explained in detail through computational experiments. Then we review a wide range of studies related to multiobjective genetic fuzzy systems. Finally we point out future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass, H.A.: Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization. In: Proc. of CEC 2003, pp. 2074–2080 (2003)

    Google Scholar 

  2. Abbass, H.A.: Speeding up back-propagation using multiobjective evolutionary algorithms. Neural Comput. 15, 2705–2726 (2003)

    Article  MATH  Google Scholar 

  3. Abe, S.: Pattern classification: Neuro-fuzzy methods and their comparison. Springer, London (2001)

    MATH  Google Scholar 

  4. Abonyi, J., Roubos, J.A., Szeifert, F.: Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. Int. J. of Approx. Reason 32, 1–21 (2003)

    Article  MATH  Google Scholar 

  5. Adra, S.F., Griffin, I., Fleming, P.J.: A comparative study of progressive preference articulation techniques for multiobjective optimisation. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 908–921. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Agrawal, S., Dashora, Y., Tiwari, M.K., Son, Y.J.: Interactive particle swarm: A Pareto-adaptive metaheuristic to multiobjective optimization. IEEE Trans. on Syst. Man and Cybern. - Part A 38, 258–277 (2008)

    Article  Google Scholar 

  7. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI, Menlo Park (1996)

    Google Scholar 

  8. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. on Evol. Comput. 6, 443–462 (2002)

    Article  Google Scholar 

  9. Alcala, R., Cano, J.R., Cordon, O., Herrera, F., Villar, P., Zwir, I.: Linguistic modeling with hierarchical systems of weighted linguistic rules. Int. J. of Approx. Reason 32, 187–215 (2003)

    Article  MATH  Google Scholar 

  10. Alcala, R., Alcala-Fdez, J., Gacto, M.J., Herrera, F.: A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. Int. J. of Uncertain Fuzziness and Knowl-Based Syst. 15, 539–557 (2007)

    Article  MATH  Google Scholar 

  11. Araujo, L.: Multiobjective genetic programming for natural language parsing and tagging. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 433–442. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Babu, B.V., Chakole, P.G., Mubeen, J.H.S.: Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor. Chem. Eng. Sci. 60, 4822–4837 (2005)

    Article  Google Scholar 

  13. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36, 105–139 (1999)

    Article  Google Scholar 

  14. Baumgartner, U., Magele, C., Renhart, W.: Pareto optimality and particle swarm optimization. IEEE Trans. on Magn. 40, 1172–1175 (2004)

    Article  Google Scholar 

  15. Bayardo Jr., R.J., Agrawal, R.: Mining the most interesting rules. In: Proc. of KDD, pp. 145–153 (1999)

    Google Scholar 

  16. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  17. Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming: Reducing bloat using SPEA2. In: Proc. of CEC 2001, pp. 536–543 (2001)

    Google Scholar 

  18. Booker, L.B., Goldberg, D.E., Holland, J.H.: Classifier systems and genetic algorithms. Artif. Intell. 40, 235–282 (1989)

    Article  Google Scholar 

  19. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Cano, J.R., Herrera, F., Lozano, M.: Stratification for scaling up evolutionary prototype selection. Pattern Recognit. Lett. 26, 953–963 (2005)

    Article  Google Scholar 

  21. Cantu-Paz, E.: Efficient and accurate parallel genetic algorithms. Springer, Berlin (2000)

    MATH  Google Scholar 

  22. Casillas, J., Cordon, O., del Jesus, M.J., Herrera, F.: Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans. on Fuzzy Syst. 13, 13–29 (2005)

    Article  Google Scholar 

  23. Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.): Accuracy improvements in linguistic fuzzy modeling. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.): Interpretability issues in fuzzy modeling. Springer, Berlin (2003)

    MATH  Google Scholar 

  25. Castillo, L., Gonzalez, A., Perez, R.: Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets and Syst. 120, 309–321 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chandra, A., Yao, X.: DIVACE: Diverse and accurate ensemble learning algorithm. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004, vol. 3177, pp. 619–625. Springer, Heidelberg (2004)

    Google Scholar 

  27. Chandra, A., Yao, X.: Evolutionary framework for the construction of diverse hybrid ensemble. In: Proc. of ESANN 2005, pp. 253–258 (2005)

    Google Scholar 

  28. Chang, Y.P., Wu, C.J.: Optimal multiobjective planning of large-scale passive harmonic filters using hybrid differential evolution method considering parameter and loading uncertainty. IEEE Trans. on Power Deliv. 20, 408–416 (2005)

    Article  Google Scholar 

  29. Chen, L.H., Chiang, C.H.: An intelligent control system with a multi-objective self-exploration process. Fuzzy Sets and Syst. 143, 275–294 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cherkassky, V., Mulier, F.: Learning from data: Concepts, theory, and methods. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  31. Coello, C.A.C.: Handling preferences in evolutionary multiobjective optimization: A survey. In: Proc. of CEC 2000, pp. 30–37 (2000)

    Google Scholar 

  32. Coello, C.A.C., Lamont, G.B.: Applications of multi-objective evolutionary algorithms. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  33. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. on Evol. Comput. 8, 256–279 (2004)

    Article  Google Scholar 

  34. Coello, C.A.C., van Veldhuizen, D.A., Lamont, G.B.: Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  35. Cordon, O., del Jesus, M.J., Herrera, F., Lozano, M.: MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach. Int. J. of Intell. Syst. 14, 1123–1153 (1999)

    Article  MATH  Google Scholar 

  36. Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Syst. 141, 5–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  38. Cordon, O., Herrera-Viedma, E., Luque, M.: Evolutionary learning of Boolean queries by multiobjective genetic programming. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 710–719. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  39. Cordon, O., Jesus, M.J.D., Herrera, F., Magdalena, L., Villar, P.: A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems. In: Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.) Interpretability issues in fuzzy modeling, pp. 79–99. Springer, Berlin (2003)

    Google Scholar 

  40. Cvetkovic, D., Parmee, I.C.: Preferences and their application in evolutionary multiobjective optimization. IEEE Trans. on Evol. Comput. 6, 42–57 (2002)

    Article  Google Scholar 

  41. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  42. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  43. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proc. of GECCO 2006, pp. 635–642 (2006)

    Google Scholar 

  44. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 40, 139–157 (2000)

    Article  Google Scholar 

  45. Emmanouilidis, C., Hunter, A., MacIntyre, J.: A multiobjective evolutionary setting for feature selection and acommonality-based crossover operator. In: Proc. of CEC 2000, pp. 309–316 (2000)

    Google Scholar 

  46. Feldman, D.S.: Fuzzy network synthesis with genetic algorithms. In: Proc. of 5th ICGA, pp. 312–317 (1995)

    Google Scholar 

  47. da Fonseca, V.G., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimizers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)

    Google Scholar 

  48. Freitas, A.: Data mining and knowledge discovery with evolutionary algorithms. Springer, Berlin (2002)

    MATH  Google Scholar 

  49. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. of Comput. and Syst. Sci. 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  50. Funahashi, K.: On the approximate realization of continuous-mappings by neural networks. Neural Netw. 2, 83–192 (1989)

    Article  Google Scholar 

  51. Ghosh, A., Dehuri, S., Ghosh, S. (eds.): Multi-objective evolutionary algorithms for knowledge discovery from databases. Springer, Berlin (2008)

    MATH  Google Scholar 

  52. Ghosh, A., Nath, B.T.: Multi-objective rule mining using genetic algorithms. Inf. Sci. 163, 123–133 (2004)

    Article  MathSciNet  Google Scholar 

  53. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  54. Gomez-Skarmeta, A.F., Jimenez, F., Sanchez, G.: Improving interpretability in approximative fuzzy models via multiobjective evolutionary algorithms. Int. J. of Intell. Syst. 22, 943–969 (2007)

    Article  MATH  Google Scholar 

  55. Gonzalez, A., Perez, R.: SLAVE: A genetic learning system based on an iterative approach. IEEE Trans. on Fuzzy Syst. 7, 176–191 (1999)

    Article  Google Scholar 

  56. Gonzalez, J., Rojas, I., Ortega, J., Pomares, H., Fernandez, F.J., Diaz, A.F.: Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Trans. on Neural Netw. 14, 1478–1495 (2003)

    Article  Google Scholar 

  57. Gonzalez, J., Rojas, I., Pomares, H., Herrera, L.J., Guillen, A., Palomares, J.M., Rojas, F.: Improving the accuracy while preserving the interpretability of fuzzy function approximators by means of multi-objective evolutionary algorithms. Int. J. of Approx. Reason 44, 32–44 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  58. Guillaume, S.: Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans. on Fuzzy Syst. 9, 426–443 (2001)

    Article  Google Scholar 

  59. Handl, J., Knowles, J.: Evolutionary multiobjective clustering. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1081–1091. Springer, Heidelberg (2004)

    Google Scholar 

  60. Handl, J., Knowles, J.: Multiobjective clustering around medoids. In: Proc. of CEC 2005, pp. 632–639 (2005)

    Google Scholar 

  61. Handl, J., Knowles, J.: Improving the scalability of multiobjective clustering. In: Proc. of CEC 2005, pp. 2372–2379 (2005)

    Google Scholar 

  62. Handl, J., Knowles, J.: Exploiting the trade-off - The benefits of multiple objectives in data clustering. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 547–560. Springer, Heidelberg (2005)

    Google Scholar 

  63. Herrera, F.: Genetic fuzzy systems: Status, critical considerations and future directions. Int. J. of Comput. Intell. Res. 1, 59–67 (2005)

    Google Scholar 

  64. Ho, S.L., Yang, S.Y., Ni, G.Z., Lo, E.W.C., Wong, H.C.: A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans. on Magn. 41, 1756–1759 (2005)

    Article  Google Scholar 

  65. Hong, T.P., Kuo, C.S., Chi, S.C.: Trade-off between computation time and number of rules for fuzzy mining from quantitative data. Int. J. of Uncertain, Fuzziness and Knowl-Based Syst. 9, 587–604 (2001)

    MATH  Google Scholar 

  66. Horikawa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans. on Neural Netw. 3, 801–806 (1993)

    Article  Google Scholar 

  67. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  68. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)

    Article  Google Scholar 

  69. Hu, Y.C., Chen, R.S., Tzeng, G.H.: Finding fuzzy classification rules using data mining techniques. Pattern Recognit. Lett. 24, 509–519 (2003)

    Article  MATH  Google Scholar 

  70. Hughes, E.J.: Evolutionary many-objective optimization: many once or one many? In: Proc. of CEC 2005, pp. 222–227 (2005)

    Google Scholar 

  71. de la Iglesia, B., Philpott, M.S., Bagnall, A.J., Rayward-Smith, V.J.: Data mining rules using multi-objective evolutionary algorithms. In: Proc. of CEC 2003, pp. 1552–1559 (2003)

    Google Scholar 

  72. de la Iglesia, B., Reynolds, A., Rayward-Smith, V.J.: Developments on a multi-objective metaheuristic (MOMH) algorithm for finding interesting sets of classification rules. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 826–840. Springer, Heidelberg (2005)

    Google Scholar 

  73. de la Iglesia, B., Richards, G., Philpott, M.S., Rayward-Smith, V.J.: The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification. Europ. J. of Oper. Res. 169, 898–917 (2006)

    Article  MATH  Google Scholar 

  74. Ishibuchi, H., Kuwajima, I., Nojima, Y.: Relation between Pareto-optimal fuzzy rules and Pareto-optimal fuzzy rule sets. In: Proc of IEEE MCDM 2007, pp. 42–49 (2007)

    Google Scholar 

  75. Ishibuchi, H., Murata, T., Turksen, I.B.: Selecting linguistic classification rules by two-objective genetic algorithms. In: Proc. of SMC 1995, pp. 1410–1415 (1995)

    Google Scholar 

  76. Ishibuchi, H., Murata, T., Turksen, I.B.: Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets and Syst. 89, 135–150 (1997)

    Article  Google Scholar 

  77. Ishibuchi, H., Nakashima, T.: Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes. IEEE Trans. on Ind. Electron 46, 157–168 (1999)

    Article  Google Scholar 

  78. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multi-dimensional pattern classification problems. IEEE Trans. on Syst. Man and Cybern. - Part B 29, 601–618 (1999)

    Article  Google Scholar 

  79. Ishibuchi, H., Nakashima, T., Murata, T.: Three-objective genetics-based machine learning for linguistic rule extraction. Inf. Sci. 136, 109–133 (2001)

    Article  MATH  Google Scholar 

  80. Ishibuchi, H., Nakashima, T., Nii, M.: Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining. Springer, Berlin (2004)

    Google Scholar 

  81. Ishibuchi, H., Namba, S.: Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1123–1132. Springer, Heidelberg (2004)

    Google Scholar 

  82. Ishibuchi, H., Nojima, Y.: Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers. Int. J. of Hybrid Intell. Syst. 3, 129–145 (2006)

    MATH  Google Scholar 

  83. Ishibuchi, H., Nojima, Y., Kuwajima, I.: Finding simple fuzzy classification systems with high interpretability through multiobjective rule selection. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS, vol. 4252, pp. 86–93. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  84. Ishibuchi, H., Nojima, Y.: Optimization of scalarizing functions through evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 51–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  85. Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. of Approx. Reason 44, 4–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  86. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. on Fuzzy Syst. 3, 260–270 (1995)

    Article  Google Scholar 

  87. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A short Review. In: Proc. of CEC 2008, pp. 2424–2431 (2008)

    Google Scholar 

  88. Ishibuchi, H., Yamamoto, T.: Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1077–1088. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  89. Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Syst. 141, 59–88 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  90. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. on Fuzzy Syst. 13, 428–435 (2005)

    Article  Google Scholar 

  91. Ishibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of fuzzy GBML approaches for pattern classification problems. IEEE Trans. on Syst. Man and Cybern. - Part B 35, 359–365 (2005)

    Article  Google Scholar 

  92. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. on Syst. Man and Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  93. Jaszkiewicz, A.: On the computational efficiency of multiple objective metaheuristics: The knapsack problem case study. Europ. J. of Oper. Res. 158, 418–433 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  94. Jiménez, F., Gómez-Skarmeta, A.F., Roubos, H., Babuska, R.: Accurate, transparent, and compact fuzzy models for function approximation and dynamic modeling through multi-objective evolutionary optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 653–667. Springer, Heidelberg (2001)

    Google Scholar 

  95. Jin, Y.: Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement. IEEE Trans. on Fuzzy Syst. 8, 212–221 (2000)

    Article  Google Scholar 

  96. Jin, Y. (ed.): Knowledge incorporation in evolutionary computation. Springer, Berlin (2005)

    MATH  Google Scholar 

  97. Jin, Y. (ed.): Multi-objective machine learning. Springer, Berlin (2006)

    Google Scholar 

  98. Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling using multi-objective evolutionary algorithms. In: Proc. of CEC 2004, pp. 1–8 (2004)

    Google Scholar 

  99. Jin, Y., Sendhoff, B., Koerner, E.: Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 752–766. Springer, Heidelberg (2005)

    Google Scholar 

  100. Jin, Y., von Seelen, W., Sendhoff, B.: On generating FC3 fuzzy rule systems from data using evolution strategies. IEEE Trans. on Syst. Man and Cybern. - Part B 29, 829–845 (1999)

    Article  Google Scholar 

  101. Karr, C.L.: Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proc. of 4th ICGA, pp. 450–457 (1991)

    Google Scholar 

  102. Karr, C.L., Gentry, E.J.: Fuzzy control of pH using genetic algorithms. IEEE Trans. on Fuzzy Syst. 1, 46–53 (1993)

    Article  Google Scholar 

  103. Kaya, M.: Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules. Soft Comput. 10, 578–586 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  104. Khara, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  105. Kim, H.S., Roschke, P.N.: Fuzzy control of base-isolation system using multi-objective genetic algorithm. Comput-Aided Civil and Infrast. Eng. 21, 436–449 (2006)

    Article  Google Scholar 

  106. Kosko, B.: Fuzzy systems as universal approximators. In: Proc of FUZZ-IEEE 1992, pp. 1153–1162 (1992)

    Google Scholar 

  107. Kupinski, M.A., Anastasio, M.A.: Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curve. IEEE Trans. on Med. Imaging 18, 675–685 (1999)

    Article  Google Scholar 

  108. Li, H., Zhang, Q.F.: A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  109. Liu, H., Motoda, H.: Feature selection for knowledge discovery and data mining. Kluwer Academic Publishers, Norwell (1998)

    MATH  Google Scholar 

  110. Llora, X., Goldberg, D.E.: Bounding the effect of noise in multiobjective learning classifier systems. Evol. Comput. 11, 278–297 (2003)

    Article  Google Scholar 

  111. Mendel, J.M.: Fuzzy-logic systems for engineering - A tutorial. In: Proceedings of IEEE, vol. 83, pp. 345–377 (1995)

    Google Scholar 

  112. Miettinen, K.: Nonlinear multiobjective optimization. Kluwer, Boston (1998)

    Google Scholar 

  113. Mikut, R., Jakel, J., Groll, L.: Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets and Syst. 150, 179–197 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  114. Muhlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function optimizer. Parallel. Comput. 17, 619–632 (1991)

    Article  Google Scholar 

  115. Nauck, D., Klawonn, F., Kruse, R.: Foundations of neuro-fuzzy systems. John Wiley & Sons, New York (1997)

    Google Scholar 

  116. Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. in Med. 16, 149–169 (1999)

    Article  Google Scholar 

  117. Nojima, Y., Ishibuchi, H.: Genetic rule selection with a multi-classifier coding scheme for ensemble classifier design. Int. J. of Hybrid Intell. Syst. 4, 157–169 (2007)

    MATH  Google Scholar 

  118. Nojima, Y., Ishibuchi, H., Kuwajima, I.: Parallel distributed genetic fuzzy rule selection. Soft Comput. (2008) (in press)

    Google Scholar 

  119. Oliveira, L.S., Morita, M., Sabourin, R.: Multi-objective genetic algorithms to create ensemble of classifiers. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 592–606. Springer, Heidelberg (2005)

    Google Scholar 

  120. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Feature selection using multi-objective genetic algorithms for handwritten digit recognition. In: Proc. of ICPR 2002, pp. 568–571 (2002)

    Google Scholar 

  121. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition. Int. J. of Pattern Recognit. and Artif. Intell. 17, 903–930 (2003)

    Article  Google Scholar 

  122. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Feature selection for ensembles: A hierarchical multi-objective genetic algorithm approach. In: Proc. of ICDAR 2003, pp. 676–680 (2003)

    Google Scholar 

  123. Parodi, A., Bonelli, P.: A new approach to fuzzy classifier systems. In: Proc. of 5th ICGA, pp. 223–230 (1993)

    Google Scholar 

  124. Pulkkinen, P., Koivisto, H.: Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms. Int. J. of Approx. Reason 48, 526–543 (2008)

    Article  Google Scholar 

  125. Purshouse, R.C., Fleming, P.J.: Evolutionary many-objective optimization: An exploratory analysis. In: Proc. of CEC 2003, pp. 2066–2073 (2003)

    Google Scholar 

  126. Reynolds, A., de la Iglesia, B.: Rule induction using multi-objective metaheuristics: Encouraging rule diversity. In: Proc of IJCNN 2006, pp. 6375–6382 (2006)

    Google Scholar 

  127. Reynolds, A.P., de la Iglesia, B.: Rule induction for classification using multi-objective genetic programming. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 516–530. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  128. Robic, T., Filipic, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)

    Google Scholar 

  129. Rodriguez-Vazquez, K., Fonseca, C.M., Fleming, P.J.: Multiobjective genetic programming: A nonlinear system identification application. In: Proc. of GP-97LB, pp. 207–212 (1997)

    Google Scholar 

  130. Roubos, H., Setnes, M.: Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. on Fuzzy Syst. 9, 516–524 (2001)

    Article  Google Scholar 

  131. Rumelhart, D.E., McClelland, J.L., PDP Research Group: Parellel distributed processing. MIT Press, Cambridge (1986)

    Google Scholar 

  132. Setnes, M., Babuska, R., Verbruggen, B.: Rule-based modeling: Precision and transparency. IEEE Trans. on Syst. Man and Cybern. - Part C 28, 165–169 (1998)

    Article  Google Scholar 

  133. Setnes, M., Roubos, H.: GA-based modeling and classification: Complexity and performance. IEEE Trans. on Fuzzy Syst. 8, 509–522 (2000)

    Article  Google Scholar 

  134. Setzkorn, C., Paton, R.C.: On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems. BioSyst. 81, 101–112 (2005)

    Article  Google Scholar 

  135. Stewart, P., Stone, D.A., Fleming, P.J.: Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop. Eng. Appl. of Artif. Intell. 17, 275–284 (2004)

    Article  Google Scholar 

  136. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Syst. Man and Cybern. 15, 116–132 (1985)

    MATH  Google Scholar 

  137. Thrift, P.: Fuzzy logic synthesis with genetic algorithms. In: Proc. of 4th ICGA, pp. 509–513 (1991)

    Google Scholar 

  138. Tsang, C.H., Kwong, S., Wang, H.L.: Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. 40, 2373–2391 (2007)

    Article  MATH  Google Scholar 

  139. Valenzuela-Rendon, M.: The fuzzy classifier system: A classifier system for continuously varying variables. In: Proc. of 4th ICGA, pp. 346–353 (1991)

    Google Scholar 

  140. Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Agent-based evolutionary approach for interpretable rule-based knowledge extraction. IEEE Trans. on Syst. Man and Cybern. - Part C 35, 143–155 (2005)

    Article  Google Scholar 

  141. Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Syst. 149, 149–186 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  142. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. on Syst. Man and Cybern. 22, 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  143. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. on Neural Netw. 3, 807–814 (1992)

    Article  Google Scholar 

  144. Xing, Z.Y., Zhang, Y., Hou, Y.L., Jia, L.M.: On generating fuzzy systems based on Pareto multi-objective cooperative coevolutionary algorithm. Int. J. of Control Autom. and Syst. 5, 444–455 (2007)

    Google Scholar 

  145. Yen, J., Wang, L., Gillespie, G.W.: Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans. on Fuzzy Syst. 6, 530–537 (1998)

    Article  Google Scholar 

  146. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithms. TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich (2001)

    Google Scholar 

  147. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. on Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  148. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. on Evol. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishibuchi, H., Nojima, Y. (2009). Multiobjective Genetic Fuzzy Systems. In: Mumford, C.L., Jain, L.C. (eds) Computational Intelligence. Intelligent Systems Reference Library, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01799-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01799-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01798-8

  • Online ISBN: 978-3-642-01799-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics