Skip to main content

Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study

  • Conference paper
Models in Software Engineering (MODELS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5421))

Abstract

The main goal of this paper is to show the findings obtained through a meta-analysis study carried out with the data obtained from a family of five controlled experiments performed in academic environments. This family of experiments was carried out to validate empirically two hypotheses applied to UML class diagrams, which investigate 1) The dependence between the structural complexity and size of UML class diagrams on one hand and their cognitive complexity on the other, as well as 2) The dependence between the cognitive complexity of UML class diagrams and their comprehensibility and modifiability. We carried out a meta-analysis, as it allows us to integrate the individual findings obtained from the execution of a family of experiments carried out to test the aforementioned hypotheses. The meta-analysis reveals that the measures related to associations and generalizations have a strong correlation with the cognitive complexity, and that the cognitive complexity has a greater correlation to comprehensibility than to modifiability. These results have implications from the points of view of both modeling and teaching, revealing which UML constructs are most influential when modelers have to comprehend and modify UML class diagrams. In addition, the measures related to associations and generalizations could be used to build prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atkinson, C., Kühne, T.: Model Driven Development: a Metamodeling Foundation. IEEE Transactions on Software Engineering 20, 36–41 (2003)

    Article  Google Scholar 

  2. Briand, L., Morasca, S., Basili, V.: Defining and Validating Measures for Object-Based High-Level Design. IEEE Transactions on Software Engineering 25, 722–743 (1999)

    Article  Google Scholar 

  3. ISO-IEC, ISO/IEC 9126. Information Technology - Software Product Quality (2001)

    Google Scholar 

  4. El-Emam, K., Melo, W.: The Prediction of Faulty Classes Using Object-Oriented Design Metrics, National Research Council of Canada (1999)

    Google Scholar 

  5. El-Emam, K., Benlarbi, S., Goel, N., Rai, S.: The Confounding Effect of Class Size on the Validity of Object-Oriented Metrics. IEEE Transactions on Software Engineering 27(7), 630–650 (2001)

    Article  Google Scholar 

  6. Poels, G., Dedene, G.: Measures for assessing dynamic complexity aspects of object-oriented conceptual schemes. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 499–512. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Genero, M., Manso, M.E., Piattini, M.: Early Indicators of UML Class Diagrams Understandability and Modifiability. In: ACM-IEEE International Symposium on Empirical Software Engineering (2004)

    Google Scholar 

  8. Genero, M., Manso, M.E., Visaggio, A., Canfora, G., Piattini, M.: Building Measure-Based Prediction Models for UML Class Diagram Maintainability. Empirical Software Engineering 12, 517–549 (2007)

    Article  Google Scholar 

  9. Lipsey, M., Wison, D.: Practical Meta-Analysis. Sage, Thousand Oaks (2001)

    Google Scholar 

  10. Miller, J.: Applying Meta-Analytical Procedures to Software Engineering Experiments. Journal of Systems and Software 54, 29–39 (2000)

    Article  Google Scholar 

  11. Pickard, L.M.: Combining Empirical Results in Software Engineering, University of Keele (2004)

    Google Scholar 

  12. Basili, V., Shull, F., Lanubile, F.: Building Knowledge through Families of Experiments. IEEE Transactions on Software Engineering 25, 456–473 (1999)

    Article  Google Scholar 

  13. Shull, F., Carver, J., Travassos, G., Maldodano, J., Conradi, R., Basili, V.: Replicated Studies: Building a Body of Knowledge about Software Reading Techniques. Lecture Notes on Empirical Software Engineering, pp. 39–84. World Scientific, Singapore (2003)

    Google Scholar 

  14. Wohlin, C., Runeson, P., Hast, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in Software Engineering: an Introduction. Kluwer Academic Publisher, Dordrecht (2000)

    Book  MATH  Google Scholar 

  15. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer Academic Publishers, Dordrecht (2001)

    Book  MATH  Google Scholar 

  16. Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects - a Comparative Study of Students & Professionals in Lead-Time Impact Assessment. In: 4th Conference on Empirical Assessment & Evaluation in Software Engineering (EASE 2000). Keele, UK (2000)

    Google Scholar 

  17. Sjoberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V., Karahasanovic, A., Liborg, N.K., Rekdal, A.C.: A Survey of Controlled Experiments in Software Engineering. IEEE Transactions on Software Engineering 31(9), 733–753 (2005)

    Article  Google Scholar 

  18. SPSS, SPSS 12.0, Syntax Reference Guide. SPSS Inc.: Chicago, USA (2003)

    Google Scholar 

  19. Biostat, Comprehensive Meta-Analysis v2 (2006)

    Google Scholar 

  20. Glass, G.V., McGaw, B., Smith, M.L.: Meta-Analysis in Social Research. Sage Publications, Thousand Oaks (1981)

    Google Scholar 

  21. Hedges, L.V., Olkin, I.: Statistical Methods for Meta-Analysis. Academia Press (1985)

    Google Scholar 

  22. Rosenthal, R.: Meta-Analytic Procedures for Social Research. Sage Publications, Thousand Oaks (1986)

    Google Scholar 

  23. Sutton, J.A., Abrams, R.K., Jones, R.D., Sheldon, A.T., Song, F.: Methods for Meta-Analysis in Medical Research. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  24. Wolf, F.M.: Meta-Analysis: Quantitative Methods for Research Synthesis. Sage Publications, Thousand Oaks (1986)

    Book  Google Scholar 

  25. Dybå, T., Arisholm, E., Sjøberg, D.I.K., Hannay, J.E., Shull, F.: Are Two Heads Better than One? On the Effectiveness of Pair Programming. IEEE Software 24(6), 10–13 (2007)

    Article  Google Scholar 

  26. Miller, J., McDonald, F.: Statistical Analysis of Two Experimental Studies, University of Strathclyde (1998)

    Google Scholar 

  27. Kampenes, V., Dybå, T., Hannay, J.E., Sjoberg, D.I.K.: A Systematic Review of Effect Size in Software Engineering Experiments. Information and Software Technology 49(11-12), 1073–1086 (2007)

    Article  Google Scholar 

  28. Cruz-Lemus, J.A., Genero, M., Piattini, M.: Metrics for UML Statechart Diagrams. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software Conceptual Models. Imperial College Press, UK (2005)

    Google Scholar 

  29. Reynoso, L., Genero, M., Piattini, M.: Measuring OCL Expressions: An approach based on Cognitive Techniques. In: Genero, P.A.C. (ed.) Metrics for Software Conceptual Models. Imperial College Press, UK (2005)

    Google Scholar 

  30. Genero, M., Piattini, M., Calero, C.: Early Measures for UML Class Diagrams. L’Object 6(4), 495–515 (2000)

    Google Scholar 

  31. Genero, M., Poels, G., Manso, M.E., Piattini, M.: Defining and Validating Metrics for UML Class Diagrams. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software Conceptual Models. Imperial College Press, UK (2005)

    Chapter  Google Scholar 

  32. Chidamber, S., Kemerer, C.: A Metrics Suite for Object-Oriented Design. IEEE Transactions on Software Engineering 20, 476–493 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esperanza Manso, M., Cruz-Lemus, J.A., Genero, M., Piattini, M. (2009). Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study. In: Chaudron, M.R.V. (eds) Models in Software Engineering. MODELS 2008. Lecture Notes in Computer Science, vol 5421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01648-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01648-6_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01647-9

  • Online ISBN: 978-3-642-01648-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics