Skip to main content

Humanising Antibodies by CDR Grafting

  • Protocol
Antibody Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

CDR grafting, or antibody reshaping, is the most clinically validated route to a successful therapeutic humanised monoclonal antibody, and is the process described in this chapter. Accurate determination of the rodent antibody variable region DNA sequences, amplified by RT-PCR, and homology modelling of their protein translation are key starting points. Human framework selection and the design of the DNA and protein sequences of the CDR-grafted humanised antibody, based on a thorough analysis of the rodent variable regions and comparison with existing human antibody sequences, are discussed. The central concept of the design and generation of a set of framework mutations, expressed as full-length human IgG-kappa in transiently transfected mammalian cells, for determining relative binding potency is described. This naturally leads to the objective of identifying the minimal set of framework mutations necessary to recapitulate the binding potency of the original rodent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273(4):927–948

    Article  Google Scholar 

  • Calvete JJ, Sanz L (2008) Analysis of O-glycosylation. Methods Mol Biol 446:281–292

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Gelfand I, Kister A (1998) Structural determinants in the sequences of immunoglobulin variable domain. J Mol Biol 278(2):457–479

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196(4):901–917

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Gherardi E, Tomlinson IM, Walter G, Marks JD et al (1992) Structural repertoire of the human VH segments. J Mol Biol 227(3):799–817

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G et al (1989) Conformations of immunoglobulin hypervariable regions. Nature 342(6252):877–883

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Novotny J, Bruccoleri R, Karplus M (1985) Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol 186(3):651–663

    Article  PubMed  CAS  Google Scholar 

  • Cochet O, Martin E, Fridman WH, Teillaud JL Selective PCR (1999) Amplification of functional immunoglobulin light chain from hybridoma containing the aberrant MOPC 21-derived V kappa by PNA-mediated PCR clamping. Biotechniques 26(5):818–820, 822

    PubMed  CAS  Google Scholar 

  • Gooley AA, Classon BJ, Marschalek R, Williams KL (1991) Glycosylation sites identified by detection of glycosylated amino acids released from Edman degradation: the identification of Xaa-Pro-Xaa-Xaa as a motif for Thr-O-glycosylation. Biochem Biophys Res Commun 178(3):1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321(6069):522–525

    Article  PubMed  CAS  Google Scholar 

  • Kabat EA, Wu TT, Perry HM, Gottesman KS, and Foeller C (1991) Sequences of Proteins of Immunological Interest. 5, 1-3242. NIH National Technical Information Service

    Google Scholar 

  • Kettleborough CA, Saldanha J, Heath VJ, Morrison CJ, Bendig MM (1991) Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng 4(7):773–783

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196(4):947–950

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Matsushita S, Eda Y, Kimachi K, Tokiyoshi S, Bendig MM (1991) Construction of reshaped human antibodies with HIV-neutralizing activity. Hum Antibodies Hybridomas 2(3):124–134

    PubMed  CAS  Google Scholar 

  • Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM (1997) Antibody structure, prediction and redesign. Biophys Chem 68(1-3):9–16

    Article  PubMed  CAS  Google Scholar 

  • Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM (1998) Conformations of the third hypervariable region in the VH domain of immunoglobulins. J Mol Biol 275(2):269–294

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier C, Michel H (1996) Improved cloning of antibody variable regions from hybridomas by an antisense-directed RNase H digestion of the P3-X63-Ag8.653 derived pseudogene mRNA. Nucleic Acids Res 24(10):1979–1980

    Article  PubMed  CAS  Google Scholar 

  • Rathanaswami P, Babcook J, Gallo M (2008) High-affinity binding measurements of antibodies to cell-surface-expressed antigens. Anal Biochem 373(1):52–60

    Article  PubMed  CAS  Google Scholar 

  • Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332(6162):323–327

    Article  PubMed  CAS  Google Scholar 

  • Tramontano A, Chothia C, Lesk AM (1989) Structural determinants of the conformations of medium-sized loops in proteins. Proteins 6(4):382–394

    Article  PubMed  CAS  Google Scholar 

  • Tramontano A, Chothia C, Lesk AM (1990) Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J Mol Biol 215(1):175–182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the valuable contributions of all previous workers in the Therapeutic Antibody Group (and its earlier incarnations, including AERES Biomedical Ltd.) at MRC Technology in developing and testing the methods outlined in this chapter, especially MRC Technology scientists (past and present) Mary Bendig PhD, Alex Brown MSc, Jon Chappel PhD, Margaret Cronin BSc, Dolores Crowley BSc, Eilish Cullen BSc, Vicky Heath BSc, Simon Keen BSc, Katy Kettleborough PhD, Olivier Léger PhD Alison Levy BSc, Charlotte Morrison BSc, Grant Munroe PhD, Siobhan O’Brien PhD, Sue Potts BSc, José Saldanha PhD, Alicia Sedo, BSc and Linda Smith BSc, as well as visiting scientists Dr. Hiroshi Maeda of Kaketsuken, Dr. Frank Kolbinger of Novartis, and Dr. Masa Tsuchiya and Dr. Koh Sato of Chugai Pharmaceuticals.4 to 5

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gareth Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this protocol

Cite this protocol

Williams, D.G., Matthews, D.J., Jones, T. (2010). Humanising Antibodies by CDR Grafting. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01144-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01144-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01143-6

  • Online ISBN: 978-3-642-01144-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics