Skip to main content

A Hierarchy of Natural Resources with Respect to Sustainable Development—A Basis for a Natural Resources Efficiency Indicator

  • Chapter
  • First Online:
Mining, Society, and a Sustainable World

Abstract

To resolve complex issues and establish guidelines for industry, politicians need data that can be transformed into indicators for policy decisions. Using a four-level hierarchy of natural resources as a base, a meaningful resource efficiency indicator can be developed as a tool for such policy decisions.

According to this concept, sustainable development implies substituting materials at a higher level of the hierarchy, either by material from a lower level, or by resources from the technosphere that replace resources from the same level in the geosphere. Energy resources occupy the highest level of the four-level hierarchy. Most problems concerning natural resources can be solved with enough affordable energy: water can be recycled after use; saline water can be desalinated; soil erosion through deforestation can be reduced by lessening the need for biofuel; cut-off grades in metal deposits can be lowered to increase available reserves; and lower-quality scrap metal can be recycled. The next hierarchy level is represented by raw materials derived from occurrences that developed over geological time and were formed by natural enrichment (e.g., all metal deposits and some non-metallic deposits such as barite or phosphate). This level also includes deposits of the technosphere that can be recycled. The third level comprises materials available in almost unlimited amounts on Earth, such as granite, sandstone, and clay, but also those raw materials that can be produced from air (e.g., nitrogen fertilizer), or from sea water (e.g., boron, potassium, or magnesium). Wood used for construction purposes is included in this third level because it is a renewable resource. The lowest level represents waste and residue materials from the technosphere that are potential raw materials for secondary use. Because energy resources occupy the top of this hierarchy, it makes sense to conserve energy by using more raw materials of lower ranking, rather than materials from the top levels. It then follows that in order to measure resource efficiency it is not appropriate to use a pure indicator, such as “total tonnage of natural resources produced or consumed in relation to the gross national product.” Instead, in establishing guidelines for political decisions designed to improve resource efficiency in a national economy, resource efficiency should mainly be measured in terms of an energy efficiency indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technosphere is defined as the world as created by man, such as surface and subsurface constructions, machines, or waste dumps.

References

  • BGR, D_STATIS, UBA, Federal Institute for Geosciences and Natural Resources, Federal Statistical Office, Federal Environment Agency (2007) Environmental Data for Germany. Dessau, Umweltbundesamt (UBA)

    Google Scholar 

  • Bleischwitz R, Bringezu S (2007) Global resource management. Policy Paper 27, Development and Peace Foundation, Bonn: 12 pp

    Google Scholar 

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (1994) Gesetz zur Vermeidung, Verwertung und Beseitigung von Abfällen. Bundesgesetzblatt I 1994: 2705–2728

    Google Scholar 

  • BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (1998) Nachhaltige Entwicklung in Deutschland. Entwurf eines umweltpolitischen Schwerpunktprogrammes, Bonn, 147 pp

    Google Scholar 

  • Bosse HR (1999) Nachhaltiges Wirtschaften durch Hohlglasrecycling. Fakten, Analysen, wirtschaftliche Hintergrundinformationen 4, Federal Institute Geosciences and Natural Resources BGR, Hannover, 2 pp

    Google Scholar 

  • Brundtland GH (1987) Our Common Future—Report of the World Commission on Environment and Development. Oxford University Press, Oxford, UK

    Google Scholar 

  • Constantinou G (1981) Geological features and ancient exploitation of the cupriferous sulphide orebodies of Cyprus. Acta of the International Archaeological Symposium, Larnaca, Cyprus 1.-8. June 1981, Perides Foundation (Larnaca): 13–23

    Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The “Anthropocene”. Global Change Newsletter 41: 12–13

    Google Scholar 

  • Dalheimer M (1999) Regelkreis zur Rohstoffversorgung. In: Wellmer F-W, Becker-Platen JD (eds) Mit der Erde leben. Springer Berlin Heidelberg, New York

    Google Scholar 

  • Dennert H (1972) Der Westliche Oberharz als erstes geschlossenes Industriegebiet im Lande Niedersachsen. Erzmetall 25(12): 640-644

    Google Scholar 

  • Dennert H (1986) Bergbau und Hüttenwesen im Harz vom 16. bis zum 19. Jahrhundert, dargestellt in Lebensbildern früherer Persönlichkeiten. Pieper, Clausthal-Zellerfeld, Germany

    Google Scholar 

  • Enquete-Kommission Schutz des Menschen und der Umwelt (1993) Verantwortung für die Zukunft—Wege zum nachhaltigen Umgang mit Stoff- und Materialströmen. Economica-Verlag, Bonn, Germany

    Google Scholar 

  • ETH-NSSI (Natural and Social Science Interface) (2007) Workshop Scarce Raw Materials. Davos, Switzerland, September 1/2, 2007

    Google Scholar 

  • Feth GG (2008) Wie im Flug vergeht die Zeit. Frankfurter Allgemeine Zeitung, August 1, 2008

    Google Scholar 

  • Frühwald A, Welling J, Scharai-Rad M (2003) Comparison of wood products and major substitutes with respect to environmental and energy balances. Paper ECE/FAO Seminar: Strategies for the Sound Use of Wood, Poiana Brasov, Romania, March 24–27, 2003

    Google Scholar 

  • Garside B (2007) ArcelorMittal squeezes scrap suppliers to cut out copper. Metal Bulletin Monthly September 3: 18

    Google Scholar 

  • Geissler H (1994) Die Tunnel im Nordabschnitt der Schnellbahnstrecke Hannover-Würzburg. Beitr Ber Naturhist Ges Hannover 11: 1–73

    Google Scholar 

  • Gerber J (2007) Strategy towards the red list from a business perspective. Paper ETH workshop Scarce Raw Materials, Davos, Switzerland, 1/2 September 2007

    Google Scholar 

  • Gerling P (2007) Commentary on crude oil and natural gas liquids. In: World Energy Council (ed) Survey of Energy Resources, 21st ed., World Energy Council, London: 41–92

    Google Scholar 

  • Glimm S (2001) Aluminium, ein nachhaltiger Werkstoff. Metall 12: 738–742

    Google Scholar 

  • Gordon RB, Bertram M, Graedel TE (2006) Metal stocks and sustainability. PNAS 103(5): 1209–1214

    Article  CAS  Google Scholar 

  • Grober U (1999) Der Erfinder der Nachhaltigkeit. Die Zeit, 48, November 25, 1999: 98

    Google Scholar 

  • Hagelüken C, Buchert M, Stahl H (2005) Stoffströme der Platingruppenmetalle. GDMB-Medienverlag, Clausthal-Zellerfeld, Germany

    Google Scholar 

  • Hausrath H (1983) Geschichte des deutschen Waldbaus, von seinen Anfängen bis 1850. Schriftenr Inst Forstpolitik Univ Freiburg 3, 428 pp

    Google Scholar 

  • Ifeu, IAÖ (2006) (Institut für Energie- und Umweltforschung Heidelberg, Öko-Institut für angewandte Ökologie, Darmstadt) Beitrag der Abfallwirtschaft zur nachhaltigen Entwicklung in Deutschland-Industrieabfälle. Umweltbundesamt, Dessau, 419 pp

    Google Scholar 

  • IISD (2002) International Institute for Environment and Development: Breaking New Ground—The MMSD Final Report http://www.iied.org/mmsd/finalreport/index.htm

  • JCOAL (2007) Utilization of coal ash http://www.jcoal.or.jp/coaltech_en/coalash/ash/02e.html

  • Krone K, Krüger J, Orbon H, Sommer HW, Vest H (1990) Ökologische Aspekte der Primär- und Sekundäraluminiumerzeugung in der Bundesrepublik Deutschland. Metall 44(6): 559–568

    CAS  Google Scholar 

  • Lurgi AG (1992) Jahresbericht 1991, Frankfurt/Main, Germany

    Google Scholar 

  • Malenbaum W (1978) World Demand for Raw Materials in 1985 and 2000. E/MJ Mining Informational Service, New York

    Google Scholar 

  • Massachusetts Institute of Technology (2006) The Future of Geothermal Energy. Boston, MA 367 pp; http://www1.eere.energy.gov/geothermal/future-geothermal.html

  • Neumann-Mahlkau P (1997) Anthropogenic material flow—a geological factor. Proceedings of 30th International Geological Congress 2 and 3, pp. 61–66

    Google Scholar 

  • Paschen H, Oertel D, Grünewald R (2003) Möglichkeiten geothermischer Stromerzeugung in Deutschland-Sachstandsbericht. TAB Arbeitsbericht 84, Deutscher Bundestag, Berlin, Germany

    Google Scholar 

  • Quinkertz R, Rombach G, Liebig D (2001) A scenario to optimise the energy demand of aluminium production depending on recycling quota. Resources, Conservation and Recycling 33: 217–234

    Article  Google Scholar 

  • Rombach G (2006) Limits of metal recycling. In: von Gleich A, Ayres AU, Gößling-Reisemann S (eds) Sustainable Metal Management. Springer, Dordrecht, pp. 295–312

    Chapter  Google Scholar 

  • Schröder D (2004) German Federal Water and Shipping Directorate, personal communication

    Google Scholar 

  • Schulz I (2006) Ressourcenschutz durch Recycling-Baustoffe—vom Bauabfall zum Sekundärbaustoff. Paper GDMB-Meeting Committee for Construction Materials and Industrial Minerals, Flechtingen, Germany, 8 June 2006

    Google Scholar 

  • SRU (Rat von Sachverständigen für Umwelfragen=German Expert Commission for the Environment) (1994) Umweltgutachten 1994. Deutscher Bundestag 12. Wahlperiode, Drucksache 12/6995, Berlin, Germany

    Google Scholar 

  • United Nations Environment Programme (1989) Statement of sustainable development: 15th Session of the governing Council, Governing Council Decision 15/2, May 23, 1989, Annex II, GOAR, 44th Session Supplement, no. 25

    Google Scholar 

  • Verhoef EV, Gerard PJ, Reuter MA (2004) Process knowledge, system dynamics and metal ecology. Journal of Industrial Ecology 8(1–2): 23–43

    CAS  Google Scholar 

  • VDEh (2007) Steel Institute Düsseldorf. Blast Furnace Committee, Germany

    Google Scholar 

  • von Carlowitz HC (1713) Sylvicultura oeconomica oder hauswirtschaftliche Nachricht und naturmässige Anweisung zur wilden Baum-Zucht. Johann Friedrich Braun, Leipzig, Germany

    Google Scholar 

  • von Weizsäcker EU, Lovins AB, Lovins LH (1995) Faktor 4—Doppelter Wohlstand–halbierter Naturverbrauch. Droemer Knaur, München, Germany

    Google Scholar 

  • Wellmer F-W (1998) Lebensdauer und Verfügbarkeit mineralischer Rohstoffe. In: Zemann J (ed) Energievorräte und mineralische Rohstoffe: Wie lange noch? vol. 12. Österreichische Akademie der Wissenschaften. Schriftenreihe Erdwissenschaftliche Kommission, Wien, 47–73

    Google Scholar 

  • Wellmer F-W (2000) The natural resources hierarchy with respect to sustainable development. Poster at Sess.13-1 Mineral Res and Developm. 31st IGC, Rio de Janeiro Brazil 2000, Abstract-CD

    Google Scholar 

  • Wellmer F-W (2003) Mineral and energy resources: economic factor and motor for research and development. Zeitschrift der Deutschen Geologischen Gesellschaft 154(1): 1–27

    Google Scholar 

  • Wellmer F-W (2009) Reserves and resources of the geosphere, terms so often misunderstood. Is the life index of reserves of natural resources a guide to the future? Zeitschrift Deutsche Geologische Gesellschaft 159(4): 575–590

    Google Scholar 

  • Wellmer F-W, Becker-Platen JD (2001) World natural resources policy-focussing on mineral resources. In: MK Tolba Our Fragile World-Challenges and Opportunities for Sustainable Development, vol. 1. Encyclopedia for Life Support Systems Publishers Co, Ltd., Oxford, UK, 183–207

    Google Scholar 

  • Wellmer F-W, Becker-Platen JD (2002) Sustainable development and the exploitation of mineral and energy resources: a review. International Journal of Earth Sciences (Geol Rdschau) 91: 723–745

    Article  Google Scholar 

  • Wellmer F-W, Becker-Platen JD (2007) Global nonfuel mineral resources and sustainability. In: Briskey JA, Schulz KJ (ed) Proceedings for a Workshop on Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development. U.S. Geol. Surv. Circular 1294, U.S. Geological Survey, Reston, VA, 1–16

    Google Scholar 

  • Wellmer F-W, Dalheimer M (1999) Trends und Perspektiven der Rohstoffversorgung Deutschlands im 21. Jahrhundert. In Slaby D, Brezinski H (ed) Rohstoffwirtschaft im Prozess der Transformation. Freiberger Forschungshefte 5, Wirtschaftswissensch, 11–52

    Google Scholar 

  • Wellmer F-W, Kosinowski M (2003) Sustainable development and the use of nonrenewable resources. Geotimes December: 48(12): 14–17

    Google Scholar 

  • Wellmer F-W, Kosinowski M (2005) A hierarchy of natural resources with respect to sustainable development. Z dt Ges Geowiss 156(2): 247–259

    Google Scholar 

  • Wellmer F-W, Stein V (1998) Mögliche Ziele nachhaltiger Entwicklungen bei mineralischen Rohstoffen. Erzmetall 51(1): 27–38

    Google Scholar 

  • Wellmer F-W, Dalheimer M, Wagner M (2007) Economic Evaluations in Exploration. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Acknowledgments

The authors thank W.G. Ernst and J.P. Richards for their critical review, B. Bognar, D. Large, and J.C. von Maltzahn who critically read the manuscript and made numerous suggestions for improvements, and E. Westphale for preparing the drawings. Shortcomings, of course, are only the fault of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, M., Wellmer, FW. (2009). A Hierarchy of Natural Resources with Respect to Sustainable Development—A Basis for a Natural Resources Efficiency Indicator. In: Richards, J. (eds) Mining, Society, and a Sustainable World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01103-0_5

Download citation

Publish with us

Policies and ethics