Skip to main content

Divisible On-Line/Off-Line Signatures

  • Conference paper
Topics in Cryptology – CT-RSA 2009 (CT-RSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5473))

Included in the following conference series:

Abstract

On-line/Off-line signatures are used in a particular scenario where the signer must respond quickly once the message to be signed is presented. The idea is to split the signing procedure into two phases: the off-line and on-line phases. The signer can do some pre-computations in off-line phase before he sees the message to be signed.

In most of these schemes, when signing a message m, a partial signature of m is computed in the off-line phase. We call this part of signature the off-line signature token of message m. In some special applications, the off-line signature tokens might be exposed in the off-line phase. For example, some signers might want to transmit off-line signature tokens in the off-line phase in order to save the on-line transmission bandwidth. Another example is in the case of on-line/off-line threshold signature schemes, where off-line signature tokens are unavoidably exposed to all the users in the off-line phase.

This paper discusses this exposure problem and introduces a new notion: divisible on-line/off-line signatures, in which exposure of off-line signature tokens in off-line phase is allowed. An efficient construction of this type of signatures is also proposed. Furthermore, we show an important application of divisible on-line/off-line signatures in the area of on-line/off-line threshold signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-Inversion problems and the security of Chaum’s blind signature scheme. Report 2001/002, Cryptology ePrint Archive (May 2002)

    Google Scholar 

  2. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bresson, E., Catalano, D., Gennaro, R.: Improved on-line/Off-line threshold signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 217–232. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Catalano, D., Di Raimondo, M., Fiore, D., Gennaro, R.: Off-line/On-line signatures: Theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 18–30. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Crutchfield, C., Molnar, D., Turner, D., Wagner, D.: Generic on-line/Off-line threshold signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 58–74. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunications 5(4), 449–457 (1994)

    Article  Google Scholar 

  8. Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 158–173. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)

    Google Scholar 

  11. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  12. Gao, C., Wei, B., Xie, D., Tang, C.: Divisible on-line/off-line signatures. Cryptology ePrint Archive, Report 2008/447 (2008), http://eprint.iacr.org/

  13. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172. Springer, Heidelberg (1996)

    Google Scholar 

  14. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988); special issue on cryptography

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurosawa, K., Schmidt-Samoa, K.: New online/Offline signature schemes without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  17. National Institute of Standards and Technology (NIST). The Digital Signature Standard, 186. Federal Information Processing Standards Publication (FIPS PUB) (May 1994)

    Google Scholar 

  18. Schmidt-Samoa, K., Takagi, T.: Paillier’s cryptosystem modulo p\(^{\mbox{2}}\)q and its applications to trapdoor commitment schemes. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 296–313. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)

    Article  MATH  Google Scholar 

  20. Shamir, A., Tauman, Y.: Improved online/Offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Xu, S., Mu, Y., Susilo, W.: Online/Offline signatures and multisignatures for AODV and DSR routing security. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 99–110. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Yu, P., Tate, S.R.: An online/offline signature scheme based on the strong rsa assumption. In: AINA Workshops (1), pp. 601–606 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, Cz., Wei, B., Xie, D., Tang, C. (2009). Divisible On-Line/Off-Line Signatures. In: Fischlin, M. (eds) Topics in Cryptology – CT-RSA 2009. CT-RSA 2009. Lecture Notes in Computer Science, vol 5473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00862-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00862-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00861-0

  • Online ISBN: 978-3-642-00862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics