Skip to main content

Surface Modification Using Reactive Landing of Mass-Selected Ions

  • Chapter
  • First Online:
Ion Beams in Nanoscience and Technology

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

Abstract

Collisions of ions with surfaces play an important role in a variety of scientific disciplines, including surface science, materials science, mass spectrometry, imaging, and spectroscopy. Ion-surface collision phenomena are broadly used in many analytical methods and surface modification techniques, including secondary ion mass spectrometry (SIMS) [1–3], chemical imaging [4], ion scattering spectrometry [5], surface-induced dissociation (SID) [6–8], ion soft landing [9, 10], growth and modification of thin films [11], and formation of three-dimensional nanostructures [12]. Physical phenomena that occur during ion-surface collisions have been extensively reviewed [9–11]. These include physisorption or ion deposition, elastic and inelastic scattering, chemical reactions, charge exchange, sputtering, and ion implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benninghoven A, Rudenauer FG and Werner HW, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, Chemical Analysis; Wiley: New York, 1987; Vol. 86.

    Google Scholar 

  2. Pachuta SJ and Cooks RG, Chem. Rev. 87, 647, 1987.

    Article  CAS  Google Scholar 

  3. Vickerman JC and Briggs D, ToF-SIMS: Surface Analysis by Mass Spectrometry; IM Publications and SurfaceSpectra Limited: West Sussex and Manchester, UK, 2001.

    Google Scholar 

  4. Pacholski ML and Winograd N, Chem. Rev. 99, 2977, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Rabalais JW, Principles and Applications of Ion Scattering Spectroscopy: Surface Chemical and Structural Analysis; Wiley InterScience: Hoboken, NJ, 2002.

    Google Scholar 

  6. Dongre AR, Somogyi A and Wysocki VH, J. Mass Spectrom. 31, 339, 1996.

    Article  CAS  PubMed  Google Scholar 

  7. Grill V, Shen J, Evans C and Cooks RG, Rev. Sci. Instrum. 72, 3149, 2001.

    Article  CAS  ADS  Google Scholar 

  8. Laskin J and Futrell JH, Mass Spectrom. Rev. 22, 158, 2003.

    Article  CAS  PubMed  Google Scholar 

  9. Gologan B, Green JR, Alvarez J, Laskin J and Cooks RG, Phys. Chem. Chem. Phys. 7, 1490, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Gologan B, Wiseman JM and Cooks RG, Ion Soft Landing: Instrumentation, Phenomena, and Applications. In Principles of Mass Spectrometry Applied to Biomolecules; Laskin J and Lifshitz C, Eds.; John Wiley & Sons., Inc.: Hoboken, NJ, 2006.

    Google Scholar 

  11. Hanley L and Sinnott SB, Surf. Sci. 500, 500, 2002.

    Article  CAS  ADS  Google Scholar 

  12. Tseng AA, Small 1, 594, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobs DC, Annu. Rev. Phys. Chem. 53, 379, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Cooks RG, Terwilliger DT, Ast T, Beynon JH and Keough T, J. Am. Chem. Soc. 97, 1583, 1975.

    Article  CAS  Google Scholar 

  15. Cooks RG, Ast T and Mabud A, Int. J. Mass Spectrom. Ion Processes 100, 209, 1990.

    Article  CAS  Google Scholar 

  16. Williams ER, Fang LL and Zare RN, Int. J. Mass Spectrom. Ion Processes123, 233, 1993.

    Article  CAS  Google Scholar 

  17. Morris JR, Kim G, Barstis TLO, Mitra R and Jacobs DC, J. Chem. Phys. 107, 6448, 1997.

    Article  CAS  ADS  Google Scholar 

  18. Gu CG, Somogyi A, Wysocki VH and Medzihradszky KF, Anal. Chim. Acta 397, 247, 1999.

    Article  CAS  Google Scholar 

  19. Pradeep T, Shen JW, Evans C, and Cooks RG, Anal. Chem. 71, 3311, 1999.

    Article  CAS  Google Scholar 

  20. Pradeep T, Evans C, Shen JW, Cooks RG, J. Phys. Chem. B 103, 5304, 1999.

    Article  CAS  Google Scholar 

  21. Smith DL, Selvan R and Wysocki VH, Langmuir 19, 7302, 2003.

    Article  CAS  Google Scholar 

  22. Vincenti M and Cooks RG, Org. Mass Spectrom. 23, 317, 1988.

    Article  CAS  Google Scholar 

  23. Park SC, Maeng KW, Pradeep T and Kang H, Angew. Chem. Int. Ed., 40, 1497, 2001.

    Article  CAS  Google Scholar 

  24. Douglas DJ, Org. Mass Spectrom. 17, 198, 1982.

    CAS  Google Scholar 

  25. Bier ME, Vincenti M and Cooks RG, Rapid Commun. Mass Spectrom. 1, 92, 1987.

    Article  CAS  Google Scholar 

  26. Cooks RG, Ast T, Pradeep T and Wysocki V, Acc. Chem. Res. 27, 316, 1994.

    Article  CAS  Google Scholar 

  27. Franchetti V, Solka BH, Baitinger WE, Amy JW and Cooks RG, Int. J. Mass Spectrom. Ion Processes 23, 29, 1977.

    Article  CAS  Google Scholar 

  28. Miller SA, Luo H, Pachuta SJ and Cooks RG, Science 275, 1447, 1997.

    Article  CAS  Google Scholar 

  29. Mayer PS, Tureček F, Lee HN, Scheidemann AA, lney TN, Schumacher F, Štrop P, Smrčina M, Pátek M and Schirlin D, Anal. Chem. 77, 4378, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Volný M and Tureček F, J. Mass Spectrom. 41, 124, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Siuzdak G, Hollenbeck T and Bothner B, J. Mass Spectrom. 34, 1087, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Claeyssens F, Pratontep S, Xirouchaki C and Palmer RE, Nanotechnology 17, 805, 2006.

    Article  CAS  ADS  Google Scholar 

  33. Kaiser B, Bernhardt TM, Stegemann B, Opitz J and Rademann K, Phys. Rev. Lett. 83, 2918, 1999.

    Article  CAS  ADS  Google Scholar 

  34. Messerli S, Schintke S, Morgenstern K, Sanchez A, Heiz U and Schneider WD, Surf. Sci. 465, 331, 2000.

    Article  CAS  ADS  Google Scholar 

  35. Mitsui M, Nagaoka S, Matsumoto T and Nakajima A, J. Phys. Chem. B 110, 2968, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Neuendorf R, Palmer RE and Smith R, Chem. Phys. Lett. 333, 304, 2001.

    Article  CAS  ADS  Google Scholar 

  37. Palmer RE, Pratontep S and Boyen HG, Nat. Mater. 2, 443, 2003.

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Yamaguchi W, Yoshimura K, Tai Y, Maruyama Y, Igarashi K, Tanemura S and Murakami J, Chem. Phys. Lett. 311, 341, 1999.

    Article  CAS  ADS  Google Scholar 

  39. Alvarez J, Cooks RG, Barlow SE, Gaspar DJ, Futrell JH and Laskin J, Anal. Chem. 77, 3452, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Alvarez J, Futrell JH and Laskin J, J. Phys. Chem. A 110, 1678, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Gologan B, Takats Z, Alvarez J, Wiseman JM, Talaty N, Ouyang Z and Cooks RG, J. Am. Soc. Mass. Spectrom. 15, 1874, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. Ouyang Z, Takats Z, Blake TA, Gologan B, Guymon AJ, Wiseman JM, Oliver JC, Davisson VJ and Cooks RG, Science 301, 1351, 2003.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Volný M, Elam WT, Branca A, Ratner BD and Tureček F, Anal. Chem. 77, 4890, 2005.

    Article  PubMed  CAS  Google Scholar 

  44. Gao L, Lyn ME, Bergeron DE and Castleman AW, Int. J. Mass Spectrom. 229, 11, 2003.

    Article  CAS  Google Scholar 

  45. Loffler D, Jester SS, Weis P, Bottcher A and Kappes MM, J. Chem. Phys. 124, 054705, 2006.

    Article  PubMed  ADS  CAS  Google Scholar 

  46. Nanita SC, Takats Z and Cooks RG, J. Am. Soc. Mass. Spectrom. 15, 1360, 2004.

    Article  CAS  PubMed  Google Scholar 

  47. Rader HJ, Rouhanipour A, Talarico AM, Palermo V, Samori P and Mullen K, Nat. Mater. 5, 276, 2006.

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Cowin JP, Tsekouras AA, Iedema MJ, Wu K and Ellison GB, Nature 398, 405, 1999.

    Article  CAS  ADS  Google Scholar 

  49. Tsekouras AA, Iedema MJ and Cowin JP, J. Chem. Phys. 111, 2222, 1999.

    Article  CAS  ADS  Google Scholar 

  50. Arenz M, Landman U and Heiz U, Chemphyschem 7, 1871, 2006.

    Article  CAS  PubMed  Google Scholar 

  51. Nagaoka S, Matsumoto T, Okada E, Mitsui M and Nakajima A, J. Phys. Chem. B 110, 16008, 2006.

    Article  CAS  PubMed  Google Scholar 

  52. Nagaoka S, Matsumoto T, Ikemoto K, Mitsui M and Nakajima A, J. Am. Chem. Soc. 129, 1528, 2007.

    Article  CAS  PubMed  Google Scholar 

  53. Feng BB, Wunschel DS, Masselon CD, Pasa-Tolic L and Smith RD, J. Am. Chem. Soc. 121, 8961, 1999.

    Article  CAS  Google Scholar 

  54. Siuzdak G, Bothner B, Yeager M, Brugidou C, Fauquet CM, Hoey K and Chang CM, Chem. Biol. 3, 45, 1996.

    Article  CAS  PubMed  Google Scholar 

  55. Miller SA, Luo H, Jiang X, Rohrs HW and Cooks RG, Int. J. Mass Spectrom. Ion Processes 160, 83, 1997.

    Article  CAS  Google Scholar 

  56. Pradeep T, Feng B, Ast T, Patrick JS, Cooks RG and Pachuta SJ, J. Am. Soc. Mass. Spectrom. 6, 187, 1995.

    Article  CAS  Google Scholar 

  57. Shen JW, Grill V, Evans C and Cooks RG, J. Mass Spectrom. 34, 354, 1999.

    Article  CAS  Google Scholar 

  58. Wade N, Pradeep T, Shen JW and Cooks RG, Rapid Commun. Mass Spectrom. 13, 986, 1999.

    Article  CAS  Google Scholar 

  59. Wade N, Gologan B, Vincze A, Cooks RG, Sullivan DM and Bruening ML, Langmuir 18, 4799, 2002.

    Article  CAS  Google Scholar 

  60. Evans C, Wade N, Pepi F, Strossman G, Schuerlein T and Cooks RG, Anal. Chem. 74, 317, 2002.

    Article  CAS  PubMed  Google Scholar 

  61. Shen JW, Evans C, Wade N and Cooks RG, J. Am. Chem. Soc. 121, 9762, 1999.

    Article  CAS  Google Scholar 

  62. Volný M, Elam WT, Ratner BD and Tureček F, Anal. Chem. 77, 4846, 2005.

    Article  PubMed  CAS  Google Scholar 

  63. Wang P, Hadjar O, Laskin J, J. Am. Chem. Soc. 129, 8682, 2007.

    Article  CAS  PubMed  Google Scholar 

  64. Nowak P, McIntyre NS, Hunter DH, Bello I and Lau WM, Surf. Interface Anal. 23, 873, 1995.

    Article  CAS  Google Scholar 

  65. Ada ET, Kornienko O and Hanley L, J. Phys. Chem. B 102, 3959, 1998.

    Article  CAS  Google Scholar 

  66. Park KH, Kim BC and Kang H, J. Chem. Phys. 97, 2742, 1992.

    Article  CAS  ADS  Google Scholar 

  67. Rabalais JW and Kasi S, Science 239, 623, 1988.

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Love JC, Estroff LA, Kriebel JK, Nuzzo RG and Whitesides GM, Chem. Rev. 105, 1103, 2005.

    Article  CAS  Google Scholar 

  69. Volný M, Sengupta A, Wilson CB, Swanson BD, Davis EJ and Tureček F, Anal. Chem. 79, 4543, 2007.

    Article  PubMed  CAS  Google Scholar 

  70. Baek DH, Kang H and Chung JW, Phys. Rev. B 49, 2651, 1994.

    Article  CAS  ADS  Google Scholar 

  71. Bello I, Chang WH and Lau WM, J. Vac. Sci. Tech. 12, 1425, 1994.

    Article  CAS  ADS  Google Scholar 

  72. Lau WM and Kwok RWM, Int. J. Mass Spectrom. 174, 245, 1998.

    Article  CAS  ADS  Google Scholar 

  73. Kweon HK and Hakansson K, Anal. Chem. 78, 1743, 2006.

    Article  CAS  PubMed  Google Scholar 

  74. Liang SS, Makamba H, Huang SY and Chen SH, J. Chromatogr. A 1116, 38, 2006.

    Article  CAS  PubMed  Google Scholar 

  75. Wijesundara MBJ, Hanley L, Ni BR and Sinnott SB, Proc. Natl Acad. Sci. USA. 97, 23, 2000.

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Wijesundara MBJ, Ji Y, Ni B, Sinnott SB and Hanley L, J. Appl. Phys. 88, 5004, 2000.

    Article  CAS  ADS  Google Scholar 

  77. Hadjar O, Wang P, Futrell JH, Dessiaterik Y, Zhu Z, Cowin JP, Iedema MJ and Laskin J, Anal. Chem. 79, 6566, 2007.

    Article  CAS  PubMed  Google Scholar 

  78. Vestal ML, Chem. Rev. 101, 361, 2001.

    Article  CAS  PubMed  Google Scholar 

  79. Cooks RG, Ouyang Z, Takats Z and Wiseman JM, Science 311, 1566, 2006.

    Article  CAS  PubMed  ADS  Google Scholar 

  80. Fenn JB, Mann M, Meng CK, Wong SF and Whitehouse CM, Mass Spectrom. Rev. 9, 37, 1990.

    Article  CAS  Google Scholar 

  81. Raffaelli A and Saba A, Mass Spectrom. Rev. 22, 318, 2003.

    Article  CAS  PubMed  Google Scholar 

  82. Stults JT, Curr. Opin. Struct. Biol. 5, 691, 1995.

    Article  CAS  PubMed  Google Scholar 

  83. Barber M, Bordoli RS, Elliott GJ, Sedgwick RD and Tyler AN, Anal. Chem. 54, A645, 1982.

    Article  Google Scholar 

  84. Bromann K, Felix C, Brune H, Harbich W, Monot R, Buttet J and Kern K, Science 274, 956, 1996.

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Geiger RJ, Melnyk MC, Busch KL and Bartlett MG, Int. J. Mass Spectrom. 183, 415, 1999.

    Article  Google Scholar 

  86. Luo H, Miller SA, Cooks R G and Pachuta SJ, Int. J. Mass Spectrom. 174, 193, 1998.

    Article  CAS  ADS  Google Scholar 

  87. Shen JW, Yim YH, Feng BB, Grill V, Evans C and Cooks RG, Int. J. Mass Spectrom. 183, 423, 1999.

    Article  Google Scholar 

  88. Hadjar O, Futrell JH and Laskin J, J. Phys. Chem. C 111, 18220, 2007.

    Article  CAS  Google Scholar 

  89. Laskin J, Wang P, Hadjar O, Futrell JH, Alvarez J and Cooks RG, Int. J. Mass Spectrom. 265, 237, 2007.

    Article  CAS  ADS  Google Scholar 

  90. Wang H, Chen SF, Li LY and Jiang SY, Langmuir 21, 2633, 2005.

    Article  CAS  PubMed  Google Scholar 

  91. Surrey AR, Name Reactions in Organic Chemistry; Academic Press: New York, 1961.

    Google Scholar 

  92. Chan CM, Ko TM and Hiraoka H, Surf. Sci. Rep. 24, 3, 1996.

    Article  Google Scholar 

  93. Gerenser LJ, In Plasma Surface Modification of Polymers; Strobel M, Lyons C, Mittal KL, Eds.; VSP: Zeist, The Netherlands, 1994; 43.

    Google Scholar 

  94. Johnston EE and Ratner BD, J. Electron. Spectrosc. Relat. Phenom. 81, 303, 1996.

    Article  CAS  Google Scholar 

  95. Yasuda H, Plasma Polymerization; Academic: New York, 1985.

    Google Scholar 

  96. Han LM, Timmons RB, Bogdal D and Pielichowski J, Chem. Mater. 10, 1422, 1998.

    Article  CAS  Google Scholar 

  97. Hopkins J and Badyal JPS, J. Phys. Chem. 99, 4261, 1995.

    Article  CAS  Google Scholar 

  98. Labelle CB and Gleason KK, J. Vac. Sci. Tech. 17, 445, 1999.

    Article  CAS  ADS  Google Scholar 

  99. Gengenbach TR and Griesser HJ, Surf. Interface Anal. 26, 498, 1998.

    Article  CAS  Google Scholar 

  100. Leggett GJ and Vickerman JC, Anal. Chem. 63, 561, 1991.

    Article  CAS  Google Scholar 

  101. Wijesundara MBJ, Fuoco E and Hanley L, Langmuir 17, 5721, 2001.

    Article  CAS  Google Scholar 

  102. Schaub R, Jodicke H, Brunet F, Monot R, Buttet J and Harbich W, Phys. Rev. Lett. 86, 3590, 2001.

    Article  CAS  PubMed  ADS  Google Scholar 

  103. Vajda S, Winans RE, Elam JW, Lee BD, Pellin MJ, Seifert S, Tikhonov GY and Tomczyk NA, Top. Catal. 39, 161, 2006.

    Article  CAS  Google Scholar 

  104. Kaiser B, Bernhardt TM, Stegemann B, Opitz J and Rademann K, Nucl. Instrum. Methods Phys. Res., Sect. B 157, 155, 1999.

    Article  CAS  Google Scholar 

  105. Schmitz-Hubsch T, Sellam F, Staub R, Torker M, Fritz T, Kubel C, Mullen K and Leo K, Surf. Sci. 445, 358, 2000.

    Article  CAS  ADS  Google Scholar 

  106. Samori P, Keil M, Friedlein R, Birgerson J, Watson M, Mullen M, Salaneck WR and Rabe JP, J. Phys. Chem. B 105, 11114, 2001.

    Article  CAS  Google Scholar 

  107. Bottcher A, Weis P, Jester SS, Loffler D, Bihlmeier A, Klopper W and Kappes MM, Phys. Chem. Chem. Phys. 7, 2816, 2005.

    Article  PubMed  CAS  Google Scholar 

  108. Volný M, Elam WT, Ratner BD and Tureček F, J. Biomed. Mater. Res. B 80B, 505, 2007.

    Article  CAS  Google Scholar 

  109. Wang P, Hadjar O, Gassman PL and Laskin J, Phys. Chem. Chem. Phys. 10, 1512, 2008.

    Article  CAS  PubMed  Google Scholar 

  110. Ruoslahti E, Annu. Rev. Cell Dev. Biol. 12, 697, 1996.

    Article  CAS  PubMed  Google Scholar 

  111. Laskin J, Wang P and Hadjar O, Phys. Chem. Chem. Phys. 10, 1079, 2008.

    Article  CAS  PubMed  Google Scholar 

  112. Wade N, Evans C, Jo SC and Cooks RG, J. Mass Spectrom. 37, 591, 2002.

    Article  CAS  PubMed  Google Scholar 

  113. Sullivan TP and Huck WTS, Eur. J. Org. Chem. 2003, 17, 2003.

    Article  Google Scholar 

  114. Corbett AD and Gleason JL, Tetrahedron Lett. 43, 1369, 2002.

    Article  CAS  Google Scholar 

  115. Yan L, Marzolin C, Terfort A and Whitesides GM, Langmuir 13, 6704, 1997.

    Article  CAS  Google Scholar 

  116. Houseman BT, Gawalt ES and Mrksich M, Langmuir 19, 1522, 2003.

    Article  CAS  Google Scholar 

  117. Lee JK, Lee KB, Kim DJ and Choi IS, Langmuir 19, 8141, 2003.

    Article  CAS  Google Scholar 

  118. Wagner P, Hegner M, Kernen P, Zaugg F and Semenza G, Biophys. J. 70, 2052, 1996.

    Article  CAS  PubMed  Google Scholar 

  119. Laskin J, Denisov EV, Shukla A, Barlow SE and Futrell JH, Anal. Chem. 74, 3255, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Laskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, P., Laskin, J. (2009). Surface Modification Using Reactive Landing of Mass-Selected Ions. In: Hellborg, R., Whitlow, H., Zhang, Y. (eds) Ion Beams in Nanoscience and Technology. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00623-4_3

Download citation

Publish with us

Policies and ethics