Skip to main content

Trying to Grasp a Sketch of a Brain for Grasping

  • Chapter
Creating Brain-Like Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5436))

Abstract

Brain-like behavior is intimately connected with the ability to actively manage a rich set of interactions with the environment. Originating with very simple movements in homogeneous domains, the gradual evolution of movement sophistication endowed animals with an increasing ability to control their environment, ultimately advancing from the physical into the mental object domain with the advent of language-based communication and thinking. Appearing at the high complexity end of the physical movement evolution ladder, the ability of dextrous manipulation seems in the role of a “transition technology”, leading from movement control into the mental capabilities of language use and thinking. We therefore argue that manual actions and their replication in robots are positioned as a “Rosetta stone” for understanding cognition. Using the example of grasping, we contrast the “clockwork building style” of traditional engineering with more holistic, biologically inspired solutions for grasp synthesis and discuss the potential of the research field of “Manual Intelligence” and its speculative connections with language for making progress towards robots with more brain-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. St. Amant, R., Wood, A.B.: Tool use for autonomous agents. In: Proc. National Conf. on Artificial Intelligence (AAAI), pp. 184–189 (2005)

    Google Scholar 

  2. Bicchi, A.: Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robotics Autom. 16(6), 652–662 (2000)

    Article  Google Scholar 

  3. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings ICRA 2000, pp. 348–353 (2000)

    Google Scholar 

  4. Borst, C., Fischer, M., Hirzinger, G.: Calculating hand configurations for precision and pinch grasps. In: Proc. IEEE IROS 2002, pp. 1553–1559 (2002)

    Google Scholar 

  5. Borst, C., Fischer, M., Hirzinger, G.: Efficient and precise grasp planning for real world objects. In: Barbagli, F., Prattichizzo, D., Salisbury, K. (eds.) Multi-point Interaction with Real and Virtual Objects. Tracts in Advanced Robotics, vol. 18, pp. 91–111 (2005)

    Google Scholar 

  6. Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., Hirzinger, G.: Design and experiences with DLR Hand II. In: Proc. World Automation Congress, Sevilla (2004)

    Google Scholar 

  7. Castiello, U.: The Neuroscience of Grasping. Nat. Rev. Neurosci. 6, 726–736 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Cook, S.W., Goldin-Meadow, S.: The Role of Gesture in Learning. Do Children Use Their Hands to Change Their Minds? J. Cognition and Development 7(2), 211–232 (2006)

    Article  Google Scholar 

  9. Cruse, H., Dean, J., Ritter, H. (eds.): Prerational Intelligence – Adaptive Behavior and Intelligent Systems Without Symbols and Logic. Studies in Cognitive Systems, vol. 1-3. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  10. Cutkosky, M.R.: On Grasp choice, grasp models and the design of hands for manufacturing tasks. IEEE Trans. Robotics and Automation 5(3), 269–279 (1989)

    Article  Google Scholar 

  11. Dexter - Mechanism, Control and Developmental Programming, http://www-robotics.cs.umass.edu/Research/Humanoid/humanoid_index.html

  12. Fellbaum, C. (ed.): WordNet – An Electronic Lexical Database. MIT Press, Cambridge (1998)

    Google Scholar 

  13. Folio, M.R., Fewell, R.R.: Peabody Developmental Motor Scales PDMS-2 Therapy Skill Builders Publishing (2000)

    Google Scholar 

  14. Gibson, J.J.: The ecological approach to visual perception. Houghton Miffin, Boston (1979)

    Google Scholar 

  15. Mouri, T., Kawasaki, H., Yoshikawa, K., Takai, J., Ito, S.: Anthropomorphic Robot Hand: Gifu Hand III. In: Proc. of Int. Conf. ICCAS 2002 (2002)

    Google Scholar 

  16. Gentilucci, M., Corballis, M.C.: From manual gesture to speech. A gradual transition. Neurosci. & Biobehav. Reviews 30(7), 949–960 (2006)

    Article  Google Scholar 

  17. Guerra-Filho, G., Fermüller, C., Aloimonos, Y.: Discovering a Language for Human Activity. In: Proc. AAAI 2005 Fall Symposium (2005)

    Google Scholar 

  18. Hamdorf, J.M., Hall, J.C.: Acquiring surgical skills. British Journal of Surgery (87), 28–37 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Hauck, A., Passig, G., Schenk, T., Sorg, M., Färber, G.: On the performance of a biologically motivated visual controlstrategy for robotic hand-eye coordination. In: Proc. IROS 2000, vol. 3, pp. 1626–1632 (2000)

    Google Scholar 

  20. Hadara, U., Wenkert-Olenikc, D., Kraussd, R., Sorokerc, N.: Gesture and the Processing of Speech: Neuropsychological Evidence. Brain and Language 62(1), 107–126 (1998)

    Article  Google Scholar 

  21. Jacobsen, C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B.: Design of the Utah/MIT dexterous hand. In: ICRA Conf. Proceedings, pp. 1520–1532 (1986)

    Google Scholar 

  22. Jäger, G.: Applications of Game Theory in Linguistics. Language and Linguistics Compass 2, 1749–1767 (2008)

    Google Scholar 

  23. Jeannerod: The timing of natural prehension movments. J. Motor Behavior 16(3), 235–254 (1984)

    Article  CAS  Google Scholar 

  24. Kragic, D., Christensen, H.I.: Biologically motivated visual servoing and grasping for real world tasks IROS 2003. In: Proceedings of IROS 2003, vol. 4, pp. 3417–3422 (2003)

    Google Scholar 

  25. Morales, A. (2006), Experimental benchmarking of grasp reliability, http://www.robot.uji.es/people/morales/experiments/benchmark.html

  26. MacNeill, D.: Hand and Mind: what gestures reveal about thought. University of Chicago Press (1992)

    Google Scholar 

  27. Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dexterous manipulation. In: Proceedings ICRA 2000, pp. 255–262 (2000)

    Google Scholar 

  28. Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., Albu-Schaffer, A., Brunner, B., Hirschmuller, H., Kielhofer, S., Konietschke, R., Suppa, M., Wimbock, T., Zacharias, F., Hirzinger, G.: A Humanoid Two-Arm System for Dexterous Manipulation. In: 6th Humanoid Robots Conf., pp. 276–283 (2006)

    Google Scholar 

  29. Rehnmark, F., Bluethmann, W., Mehling, J., Ambrose, R.O., Diftler, M., Chu, M., Necessary, R.: Robonaut: The Short List of Technology Hurdles. Computer 38, 28–37 (2005)

    Article  Google Scholar 

  30. Röthling, F., Haschke, R., Steil, J.J., Ritter, H.: Platf orm Portable Anthropomorphic Grasping with the Bielefeld 20 DOF Shadow and 9 DOF TUM Hand. In: IEEE IROS Conference Proceedings (2007)

    Google Scholar 

  31. Röthling, F.: Real Robot Hand Grasping using Simulation-Based Optimisation of Portable Strategies Dissertation, Faculty of Technology, Bielefeld University (2007)

    Google Scholar 

  32. Rosen, J., Hannaford, B., Richards, C.G., Sinanan, M.N.: Markov modeling of minimally invasive surgery based on tool/tissueinteraction and force/torque signatures for evaluating surgical skills. IEEE Trans. Biomed. Engineering 48(5), 579–591 (2001)

    Article  CAS  Google Scholar 

  33. Santello, M., Flanders, M., Soechting, J.F.: Patterns of Hand Motion during Grasping and the Influence of Sensory Guidance. Journal of Neuroscience 22(4), 1426–1435 (2002)

    CAS  PubMed  Google Scholar 

  34. Schack, T.: The cognitive architecture of complex movement. Int. J. of Sport and Exercise Psychology 2(4), 403–438 (2004)

    Article  Google Scholar 

  35. Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neurosci. Letters 391, 77–81 (2006)

    Article  CAS  Google Scholar 

  36. Shadow Robot Company, The Shadow Dextrous Hand, http://www.shadow.org.uk/products/newhand.shtml

  37. Townsend, W.: The BarrettHand grasper – programmably flexible part handling and assembly Industrial. Robot 27(3), 181–188 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritter, H., Haschke, R., Steil, J.J. (2009). Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds) Creating Brain-Like Intelligence. Lecture Notes in Computer Science(), vol 5436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00616-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00616-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00615-9

  • Online ISBN: 978-3-642-00616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics