Skip to main content

Waves in Inhomogeneous Solids

  • Chapter
  • First Online:
Applied Wave Mathematics

Abstract

The paper aims at presenting a numerical technique used in simulating the propagation of waves in inhomogeneous elastic solids. The basic governing equations are solved by means of a finite-volume scheme that is faithful, accurate, and conservative. Furthermore, this scheme is compatible with thermodynamics through the identification of the notions of numerical fluxes (a notion from numerics) and of excess quantities (a notion from irreversible thermodynamics). A selection of one-dimensional wave propagation problems is presented, the simulation of which exploits the designed numerical scheme. This selection of exemplary problems includes (i) waves in periodic media for weakly nonlinear waves with a typical formation of a wave train, (ii) linear waves in laminates with the competition of different length scales, (iii) nonlinear waves in laminates under an impact loading with a comparison with available experimental data, and (iv) waves in functionally graded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  2. Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comp. 24, 955–978 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bedford, A., Drumheller, D.S.: Introduction to Elastic Wave Propagation. Wiley, New York (1994)

    Google Scholar 

  4. Berezovski, A., Berezovski, M., Engelbrecht, J.: Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media. Mater. Sci. Eng. A418, 364–369 (2006)

    Google Scholar 

  5. Berezovski A, Berezovski, M., Engelbrecht, J., Maugin, G.A.: Numerical simulation of waves and fronts in inhomogeneous solids. In: Nowacki, W.K., Zhao, H. (eds.) Multi-Phase and Multi-Component Materials under Dynamic Loading, pp. 71-80. Inst. Fundam. Technol. Research, Warsaw (2007)

    Google Scholar 

  6. Berezovski, A., Maugin, G.A.: Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm. J. Comp. Physics 168, 249–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berezovski, A., Maugin, G.A.: Thermoelastic wave and front propagation. J. Thermal Stresses 25, 719–743 (2002)

    Article  MathSciNet  Google Scholar 

  8. Berezovski, A., Maugin, G.A.: Stress-induced phase-transition front propagation in thermoelastic solids. Eur. J. Mech. A/Solids 24, 1–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Billingham, J., King, A.C.: Wave Motion. Cambridge University Press (2000)

    Google Scholar 

  10. Chakraborty, A., Gopalakrishnan, S.: Various numerical techniques for analysis of longitudinal wave propagation in inhomogeneous one-dimensional waveguides. Acta Mech. 162, 1–27 (2003)

    Article  MATH  Google Scholar 

  11. Chakraborty, A., Gopalakrishnan, S.: Wave propagation in inhomogeneous layered media: solution of forward and inverse problems. Acta Mech. 169, 153–185 (2004)

    Article  MATH  Google Scholar 

  12. Chen, X., Chandra, N.: The effect of heterogeneity on plane wave propagation through layered composites. Comp. Sci. Technol. 64, 1477–1493 (2004)

    Article  MATH  Google Scholar 

  13. Chen, X., Chandra, N., Rajendran, A.M.: Analytical solution to the plate impact problem of layered heterogeneous material systems. Int. J. Solids Struct. 41, 4635–4659 (2004)

    Article  MATH  Google Scholar 

  14. Chiu, T.-C., Erdogan, F.: One-dimensional wave propagation in a functionally graded elastic medium. J. Sound Vibr. 222, 453–487 (1999)

    Article  Google Scholar 

  15. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Phil. Mag. 85, 4127–4141 (2005)

    Article  Google Scholar 

  16. Fogarthy, T., LeVeque, R.J.: High-resolution finite-volume methods for acoustics in periodic and random media. J. Acoust. Soc. Am. 106, 261–297 (1999)

    Google Scholar 

  17. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. New York, Springer (1996)

    MATH  Google Scholar 

  18. Grady, D.: Scattering as a mechanism for structured shock waves in metals. J. Mech. Phys. Solids 46, 2017–2032 (1998)

    Article  MATH  Google Scholar 

  19. Graff, K.F.: Wave Motion in Elastic Solids. Oxford University Press (1975)

    Google Scholar 

  20. Guinot, V.: Godunov-type Schemes: An Introduction for Engineers. Elsevier, Amsterdam (2003)

    Google Scholar 

  21. Hirai, T.: Functionally graded materials. In: Processing of Ceramics. Vol. 17B, Part 2, pp. 292-341. VCH Verlagsgesellschaft, Weinheim (1996)

    Google Scholar 

  22. Hoffmann, K.H., Burzler, J.M., Schubert, S.: Endoreversible thermodynamics. J. Non-Equil. Thermodyn. 22, 311–355 (1997)

    Article  Google Scholar 

  23. Langseth, J.O., LeVeque, R.J.: A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comp. Physics 165, 126–166 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. LeVeque, R.J.: Wave propagation algorithms for multidimensional hyperbolic systems. J. Comp. Physics 131, 327–353 (1997)

    Article  MATH  Google Scholar 

  25. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comp. Physics 148, 346–365 (1998)

    Article  MathSciNet  Google Scholar 

  26. LeVeque, R.J.: Finite volume methods for nonlinear elasticity in heterogeneous media. Int. J. Numer. Methods in Fluids 40, 93–104 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002)

    Google Scholar 

  28. LeVeque, R.J., Yong, D.H.: Solitary waves in layered nonlinear media. SIAM J. Appl. Math. 63, 1539–1560 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liska, R., Wendroff, B.: Composite schemes for conservation laws. SIAM J. Numer. Anal. 35, 2250–2271 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Markworth, A.J., Ramesh, K.S., Parks, W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30, 2183–2193 (1995)

    Article  Google Scholar 

  31. Meurer, T., Qu, J., Jacobs, L.J.: Wave propagation in nonlinear and hysteretic media – a numerical study. Int. J. Solids Struct. 39, 5585–5614 (2002)

    Article  MATH  Google Scholar 

  32. Muschik, W., Berezovski, A.: Thermodynamic interaction between two discrete systems in non-equilibrium. J. Non-Equilib. Thermodyn. 29, 237–255 (2004)

    Article  MATH  Google Scholar 

  33. Rokhlin, S.I., Wang, L.: Ultrasonic waves in layered anisotropic media: characterization of multidirectional composites. Int. J. Solids Struct. 39, 5529–5545 (2002)

    Article  MATH  Google Scholar 

  34. Santosa, F., Symes, W.W.: A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51, 984–1005 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials. The Institute of Materials, IOM Communications, London (1998)

    Google Scholar 

  36. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997)

    MATH  Google Scholar 

  37. Toro, E.F. (ed.): Godunov Methods: Theory and Applications. Kluwer, New York (2001)

    MATH  Google Scholar 

  38. Wang, L., Rokhlin, S.I.: Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. J. Mech. Phys. Solids 52, 2473–2506 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhuang, S., Ravichandran, G., Grady, D.: An experimental investigation of shock wave propagation in periodically layered composites. J. Mech. Phys. Solids 51, 245–265 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berezovski, A., Berezovski, M., Engelbrecht, J. (2009). Waves in Inhomogeneous Solids. In: Quak, E., Soomere, T. (eds) Applied Wave Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00585-5_5

Download citation

Publish with us

Policies and ethics