Skip to main content

Long Ship Waves in Shallow Water Bodies

  • Chapter
  • First Online:
Applied Wave Mathematics

Abstract

Wakes from large high-speed ships frequently reveal many interesting and important features that are not present in the classical Kelvin ship wave system. Only a few differences are connected with the increase in the ship’s speed in a straightforward way. The majority of effects reflect nonlinear processes of wave generation and propagation. This overview concentrates on the recent results concerning the nature and consequences of these differences. The goal of the presentation is to highlight the new, nonlinear features of wakes from fast ferries, and the basic consequences of their presence for the safety of people and the environment in a comprehensive manner, but in terms understandable for non-experts. The starting point is the classical theory of the Kelvin wake and its modifications in shallow water. The pattern of ship waves undergoes major alterations when the ship’s speed becomes roughly equal with the maximum phase speed of linear waves for a given depth \(\sqrt{gH}\) . At these speeds, qualitatively new structures such as groups of long, long-crested waves that resemble shallow-water solitons, and short monochromatic wave packets resembling envelope solitons may appear. These groups remain compact for a long time and considerably extend the area directly influenced by the ship traffic. Finally, we provide evidence of certain particular features of the impact of such waves in shallow areas and of possible ecological consequences of the increased hydrodynamic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akylas, T.R., Kung, T.J., Hall, R.E.: Nonlinear groups in ship wakes. In: 17th Symposium in Naval Hydrodynamics, The Hague, The Netherlands, pp. 477–482. National Academy Press, Washington DC (1988)

    Google Scholar 

  2. Ali, M.M., Murphy, K.J., Langendorff, J.: Interrelations of river ship traffic with aquatic plants in the River Nile, Upper Egypt. Hydrobiologia 415, 93–100 (1999)

    Article  Google Scholar 

  3. Anderson, F.E.: Effect of wave-wash from personal watercraft on salt marsh channels. J. Coast. Res. Special Issue 37, 33–49 (2002)

    Google Scholar 

  4. Basin, A.M., Anfimov, V.N.: Ship Hydrodynamics. Retshnoj Transport, Leningrad (1961) (in Russian)

    Google Scholar 

  5. Bauer, B.O., Lorang, M.S., Sherman, D.J. Estimating boat-wake-induced levee erosion using sediment suspension measurements. J. Waterw. Port Coast. Ocean Eng. - ASCE 128, 152–162 (2002)

    Article  Google Scholar 

  6. Bourne, J.: Louisiana’s Vanishing Wetlands: Going, Going…. Science 289(5486), 1860–1863 (2000)

    Article  Google Scholar 

  7. Broman, B., Hammarklint, T., Rannat, K., Soomere, T., Valdmann, A.: Trends and extremes of wave fields in the north–eastern part of the Baltic Proper. Oceanologia 48(S), 165–184 (2006)

    Google Scholar 

  8. Brown, E.D., Buchsbaum, S.B., Hall, R.E., Penhune, J.P., Schmitt, K.F., Watson, K.M., Wyatt, D.C.: Observations of a nonlinear solitary wave packet in the Kelvin wake of a ship. J. Fluid Mech. 204, 263–293 (1989)

    Article  Google Scholar 

  9. Caliskan, H., Valle-Levinson, A.: Wind-wave transformations in an elongated bay. Continental Shelf Research 28, 1702–1710 (2008)

    Article  Google Scholar 

  10. Climatological Ice Atlas for the Baltic Sea, Kattegat, Skagerrak and Lake Vänern (1963–1979), Swedish Meteorological and Hydrological Institute, Norrkøping, Sweden, and Institute of Marine Research, Helsinki, Finland (1982)

    Google Scholar 

  11. Coates, T.T., Hawkes, P.J.: Beach recharge design and bi-modal wave spectra. In: Edge, B.L. (ed.) Coastal Engineering 1998: Proceedings of the 26th International Conference, Copenhagen, ASCE 3, pp. 3036–3045 (1999)

    Google Scholar 

  12. Cohen, B.I., Watson, K.M., West, B.J.: Some properties of deep water solitons. Phys. Fluids 19, 345–354 (1976)

    Article  MATH  Google Scholar 

  13. Doctors, L.J., Phillips, S.J., Day, A.H.: Focussing the wave-wake system of a high-speed marine ferry. In: FAST 2001, 6th International Conference on Fast Sea Transportation, Southampton, 1, pp. 97–106. The Royal Institute of Naval Architects, London (2001)

    Google Scholar 

  14. Doyle, R., Whittaker, T.J.T., Elsässer, B.: A study of fast ferry wash in shallow water. In: FAST 2001, 6th International Conference on Fast Sea Transportation, Southampton, 1, pp. 107–116. The Royal Institute of Naval Architects, London (2001)

    Google Scholar 

  15. Drazin, P.G., Johnson, R.S.: Solitons: an Introduction. Cambridge Texts in Applied Mathematics. Cambridge University Press (1989)

    Google Scholar 

  16. Durkee, P.A., Chartier, R.E., Brown, A., Trehubenko, E.J., Rogerson, S.D., Skupniewicz, C., Nielsen, K.E.: Composite ship track characteristics. J. Atmos. Sci. 57, 2542–2553 (2000)

    Article  Google Scholar 

  17. El-Kader, F.A., El-Soud, M.S.A., El-Serafy, K., Hassan, E.A.: An integrated navigation system for Suez Canal (SCINS). J. Navigation 56, 241–255 (2003)

    Article  Google Scholar 

  18. Erm, A., Soomere, T.: Influence of fast ship waves on optical properties of sea water in Tallinn Bay, Baltic Sea. Proc. Estonian Acad. Sci. Biol. Ecol. 53, 161–178 (2004)

    Google Scholar 

  19. Erm, A., Soomere, T.: The impact of fast ferry traffic on underwater optics and sediment resuspension. Oceanologia 48(S), 283–301 (2006)

    Google Scholar 

  20. Ertekin, R.C., Webster, W.C., Wehausen, J.V.: Ship-generated solitons. In 15th Symposium on Naval Hydrodynamics, Hamburg, Germany, pp. 347–364. National Academy Press, Washington DC (1984)

    Google Scholar 

  21. Fagerholm, H.P., Rønnberg, O., Östman, M., Paavilainen, J.: Remote sensing assessing artificial disturbance of the thermocline by ships in archipelagos of the Baltic Sea with a note on some biological consequences. In: 11th Annual International Geoscience and Remote Sensing Symposium, Helsinki 1991, 2, 377–380 (1991)

    Google Scholar 

  22. Feldtmann, M., Garner, J.: Seabed modifications to prevent wake wash from fast ferries. In: Proceedings of the RINA International Conference on Coastal Ships and Inland Waterways, London, Paper No 8. The Royal Institute of Naval Architects, London (1999)

    Google Scholar 

  23. Forsman, B.: High-Speed Ferries – Environmental Impact and Safety Assessment. PIANC Bulletin 96, 23–24 (1997)

    Google Scholar 

  24. Forsman, B.: From bow to beach. SSPA Highlights 3, 4–5 (2001)

    Google Scholar 

  25. Froude, W.: Experiments upon the effect produced on the wave-making resistance of ships by length of parallel middle body. Trans. Inst. Naval Architects 18, 77–87 (1877)

    Google Scholar 

  26. Gaskin, S.J., Pieterse, J., Al Shafie, A., Lepage, S.: Erosion of undisturbed clay samples from the banks of the St. Lawrence River. Can. J. Civ. Eng. 30, 585–595 (2003)

    Article  Google Scholar 

  27. Gourlay, T.P.: The supercritical bore produced by a high-speed ship in a channel. J. Fluid Mech. 434, 399–409 (2001)

    Article  MATH  Google Scholar 

  28. Grimshaw, R., Pelinovsky, E., Sakov, P.: Interaction of a solitary wave with an external force moving with variable speed. Stud. Appl. Math. 97, 235–276 (1996)

    MATH  MathSciNet  Google Scholar 

  29. Grimshaw, R., Pelinovsky, D., Pelinovsky, E., Talipova, T.: Wave group dynamics in weakly nonlinear long-wave models. Physica D 159, 35–57 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hall, R., Buchsbaum, S. A model for the generation and evolution of an inner-angle soliton in a Kelvin wake. In: 18th Symposium on Naval Hydrodynamics, Ann Arbor, 1990, pp. 453–463. National Academy Press, Washington DC (1991)

    Google Scholar 

  31. Hamer, M.: Solitary killers. New Scientist 163, No. 2201, 18–19 (1999).

    Google Scholar 

  32. Havelock, T.H.: The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling distance. Proc. R. Soc. London Ser. A - Math. Phys. Eng. Sci. 81, 398–430 (1908)

    Article  Google Scholar 

  33. Hennings, I., Romeiser, R., Alpers, W., Viola, A.: Radar imaging of Kelvin arms of ship wakes. Int. J. Remote Sens. 20, 2519–2543 (1999)

    Article  Google Scholar 

  34. Hofmann, H., Lorke, A., Peeters, F.: The relative importance of wind and ship waves in the littoral zone of a large lake. Limnol. Oceanogr. 53, 368–380 (2008)

    Article  Google Scholar 

  35. Hobbs, P.V., Garrett, T.J., Ferek, R.J., Strader, S.R., Hegg, D.A., Frick, G.M., Hoppel, W.A., Gasparovic, R.F., Russell, L.M., Johnson, D.W., O’Dowd, C., Durkee, P.A., Nielsen, K.E., Innis, G.: Emissions from ships with respect to their effects on clouds. J. Atmos. Sci. 57, 2570–2590 (2000)

    Article  Google Scholar 

  36. Hüsig, A., Linke, T., Zimmermann, C.: Effects from supercritical ship operation on inland canals. J. Waterw. Port Coast. Ocean Eng. – ASCE 126, 130–135 (2000)

    Article  Google Scholar 

  37. IAHR working group on wave generation and analysis: List of sea-state parameters. J. Waterw. Port Coast. Ocean Eng. - ASCE 115, 793–808 (1989)

    Article  Google Scholar 

  38. Jiang, T.: Ship Waves in Shallow Water, Fortschritt-Berichte VDI, Reihe 12, Nr. 466, VDI Verlag, Düsseldorf (2001)

    Google Scholar 

  39. Jiang, T., Henn, R., Sharma, S.D.: Wash wave generated by ships moving on fairways of varying topography. In: 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, 2002, pp. 441–457. National Academy Press, Washington DC (2003) web only: www.nap.edu

  40. Kahma, K., Pettersson, H., Tuomi, L.: Scatter diagram wave statistics from the northern Baltic Sea. MERI – Report Series of the Finnish Institute of Marine Research 49, 15–32 (2003)

    Google Scholar 

  41. Kirk McClure Morton: Investigation of high speed craft on routes near to land or enclosed estuaries. The Maritime and Coastguard Agency, UK, Research Report JR226 (1998)

    Google Scholar 

  42. Kofoed-Hansen, H., Kirkegaard, J.: Technical investigation of wake wave from fast ferries. Danish Hydraulic Institute, Report No. 5012 (1996)

    Google Scholar 

  43. Kofoed-Hansen, H., Mikkelsen, A.C.: Wake wave from fast ferries in Denmark. In: Proceedings of the 4th International Conference of Fast Sea Transportation FAST97, Sydney, 1997, 1, pp. 471–478. Baird Publications, Hong Kong (1997)

    Google Scholar 

  44. Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E.M.: Dynamics and Modelling of Ocean Waves. Cambridge University Press (1994)

    Google Scholar 

  45. Krylov, A.N.: On the wave resistance and large ship waves. In: My Memoirs, pp. 364–368. Politechnika, Sankt-Peterburg (2003) (in Russian)

    Google Scholar 

  46. Kuznetsov, N., Maz’ya, V., Vainberg, B.: Linear Water Waves. Cambridge University Press (2002)

    Google Scholar 

  47. Lamb, H.: Hydrodynamics. 6th edition Cambridge University Press (1997)

    Google Scholar 

  48. Lee, S.J., Grimshaw, R.H.J.: Upstream-advancing waves generated by 3-dimensional moving disturbances. Phys. Fluids A 2, 194–201 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  49. Lee, S.J., Yates, G.T., Wu, T.Y.: Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances. J. Fluid Mech. 199, 569–593 (1989)

    Article  Google Scholar 

  50. Li, Y., Sclavounos, P.D.: Three-dimensional nonlinear solitary waves in shallow water generated by an advancing disturbance. J. Fluid Mech. 470, 383–410 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  51. Lighthill, J.: Waves in Fluids. Cambridge University Press (1978)

    Google Scholar 

  52. Lindholm, T., Svartström, M., Spoof, L., Meriluoto, J.: Effects of ship traffic on archipelago waters off the Långnäs harbour in Åland, SW Finland. Hydrobiologia 444, 217–225 (2001)

    Article  Google Scholar 

  53. Madekivi, O. (ed.): Alusten aiheuttamien aaltojen ja virtausten ympäristövaikutukset (The environmental effects of ship-induced waves and currents, in Finnish). Vesi ja Ympäristöhallinnon Julk. Sarja A 166, 1–113 (1993)

    Google Scholar 

  54. Mei, C.C., Naciri, M.: Note on ship oscillations and wake solitons, Proc. R. Soc. London Ser. A - Math. Phys. Eng. Sci. 432, 535–546 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  55. Mietus, M. (co-ordinator): The Climate of the Baltic Sea Basin, Marine Meteorology and Related Oceanographic Activities, Report No. 41. World Meteorological Organisation, Geneva, (1998)

    Google Scholar 

  56. Millward, A.: A review of the prediction of squat in shallow water, J. Navigation 49, 77–88 (1996)

    Article  Google Scholar 

  57. Munk, W.H., Scully-Power, P., Zachariasen, F.: Ships from space. The Bakerian Lecture 1986. Proc. R. Soc. London Ser. A - Math. Phys. Eng. Sci. 412, 231–254 (1987)

    Article  Google Scholar 

  58. Naghdi, P.M., Rubin, M.B.: On the squat of a ship. J. Ship Res. 28, 107–117 (1984)

    Google Scholar 

  59. Nanson, G.C., von Krusenstierna, A., Bryant, E.A.: Experimental measurements of river-bank erosion caused by boat-generated waves on the Gordon River, Tasmania. Regul. River. 9, 1–14 (1994)

    Article  Google Scholar 

  60. Neuman, D.G., Tapio, E., Haggard, D., Laws, K.E., Bland, R.W.: Observation of long waves generated by ferries. Can. J. Remote Sens. 27, 361–370 (2001)

    Google Scholar 

  61. Osborne, P.D., Boak, E.H.: Sediment suspension and morphological response under vessel-generated wave groups: Torpedo Bay, Auckland, New Zealand. J. Coast. Res. 15, 388–398 (1999)

    Google Scholar 

  62. Parnell, K.E., Kofoed-Hansen, H.: Wakes from large high-speed ferries in confined coastal waters: management approaches with examples from New Zealand and Denmark. Coastal Manage. 29, 217–237 (2001)

    Article  Google Scholar 

  63. Parnell, K.E., McDonald, S.C., Burke, A.: Shoreline effects of vessel waves, Marlborough Sounds, New Zealand. J. Coastal Res. Special Issue 50, 502–506 (2007)

    Google Scholar 

  64. Pettersson, H.: Directional Wave Statistics from the Gulf of Finland. MERI 44, Finnish Institute of Marine Research (2001)

    Google Scholar 

  65. PIANC: Guidelines for Managing Wake Wash from High-speed Vessels. Report of the Working Group 41 of the Maritime Navigation Commission. International Navigation Association (PIANC), Brussels (2003)

    Google Scholar 

  66. Pickrill, R.A.: Beach changes on low energy lake shorelines, Lakes Manapouri and Te Anau, New Zealand. J. Coast. Res. 1, 353–363 (1985)

    Google Scholar 

  67. Redekopp, L.G., You, Z.: Passage through resonance for the forced Korteweg-de Vries equation. Phys. Rev. Lett. 74, 5158–5161 (1995)

    Article  Google Scholar 

  68. Schoellhamer, D.H.: Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuar. Coast. Shelf Sci. 43, 533–548 (1996)

    Article  Google Scholar 

  69. Soomere, T.: Wind wave statistics in Tallinn Bay, Boreal Env. Res. 10, 103–118 (2005)

    Google Scholar 

  70. Soomere, T.: Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay. Environ. Fluid Mech. 5, 293–323 (2005)

    Article  Google Scholar 

  71. Soomere, T.: Nonlinear ship wake waves as a model of rogue waves and a source of danger to the coastal environment: a review. Oceanologia 48(S), 185–202 (2006)

    Google Scholar 

  72. Soomere, T.: Fast ferries as wavemakers in a natural laboratory of rogue waves. Rend. Sem. Mat. Univ. Pol. Torino 65(2), 287–299 (2007)

    MATH  MathSciNet  Google Scholar 

  73. Soomere, T.: Nonlinear components of ship wake waves. Appl. Mech. Rev. 60, 120–138 (2007)

    Article  Google Scholar 

  74. Soomere, T.: Extremes and decadal variations of the northern Baltic Sea wave conditions. In: Pelinovsky, E., Kharif, Ch. (eds.) Extreme Ocean Waves, pp. 139–157. Springer, Berlin (2008)

    Chapter  Google Scholar 

  75. Soomere, T., Engelbrecht, J.: Weakly two-dimensional interaction of solitons in shallow water. Eur. J. Mech. B/Fluids 25, 636–648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  76. Soomere, T., Kask, J.: A specific impact of waves of fast ferries on sediment transport processes of Tallinn Bay. Proc. Estonian Acad. Sci. Biol. Ecol. 52, 319–331 (2003)

    Google Scholar 

  77. Soomere, T., Keevallik, S.: Directional and extreme wind properties in the Gulf of Finland. Proc. Estonian Acad. Sci. Eng. 9, 73–90 (2003)

    Google Scholar 

  78. Soomere, T., Rannat, K.: An experimental study of wind waves and ship wakes in Tallinn Bay. Proc. Estonian Acad. Sci. Eng. 9, 157–184 (2003)

    Google Scholar 

  79. Soomere, T., Elken, J., Kask, J., Keevallik, S., Kõuts, T., Metsaveer, J., Peterson, P.: Fast ferries as a new key forcing factor in Tallinn Bay. Proc. Estonian Acad. Sci. Eng. 9, 220–242 (2003)

    Google Scholar 

  80. Soomere, T., Rannat, K., Elken, J., Myrberg, K.: Natural and anthropogenic wave forcing in Tallinn Bay, Baltic Sea. In: Brebbia, C.A., Almorza, D., López-Aguayo, F., (eds.) Coastal Engineering VI, pp. 273–282. WIT Press, Southampton (2003)

    Google Scholar 

  81. Soomere, T., Põder, R., Rannat, K., Kask, A.: Profiles of waves from high-speed ferries in the coastal area. Proc. Estonian Acad. Sci. Eng. 11, 245–260 (2005)

    Google Scholar 

  82. Sorensen, R.M.: Ship-generated waves. Adv. Hydrosci. 9, 49–83 (1973)

    Google Scholar 

  83. Sretenskii, L.N.: Theory of Wave Motions in Fluids. Nauka, Moscow (1977) (in Russian)

    Google Scholar 

  84. Stevens, R.L., Ekermo, S.: Sedimentation and erosion in connection with ship traffic, Gøteborg Harbour, Sweden. Environ. Geol. 43, 466–475 (2003)

    Google Scholar 

  85. Stumbo, S., Fox, K., Dvorak, F., Elliot, L.: The prediction, measurement, and analysis of wake wash from marine vessels. Mar. Technol. SNAME News 36, 248–260 (1999)

    Google Scholar 

  86. Talke, S.A., Stacey, M.T.: The influence of oceanic swell on flows over an estuarine intertidal mudflat in San Francisco Bay. Estuar. Coast. Shelf Sci. 58, 541–554 (2003)

    Article  Google Scholar 

  87. Thomson, W. (Lord Kelvin): On ship waves. Trans. Inst. Mech. Eng. 8, 409–433 (1887)

    Google Scholar 

  88. Torsvik, T.: Long wave models with application to high speed vessels in shallow water. PhD Thesis, University of Bergen, Norway (2006)

    Google Scholar 

  89. Torsvik, T., Dysthe, K., Pedersen, G.: Influence of variable Froude number on waves generated by ships in shallow water. Phys. Fluids 18, Paper 0621021 (2006)

    Article  MathSciNet  Google Scholar 

  90. Torsvik, T., Soomere, T.: Simulation of patterns of wakes from high-speed ferries in Tallinn Bay. Estonian J. Eng. 14, 232–254 (2008)

    Article  Google Scholar 

  91. Ursell, F.: On Kelvin’s ship-wave pattern. J. Fluid Mech. 8, 418–431 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  92. Velegrakis, A.F., Vousdoukas, M.I., Vagenas, A.M., Karambas, Th., Dimou, K., Zarkadas, Th.: Field observations of waves generated by passing ships: a note. Coastal Eng. 54, 369–375 (2007)

    Article  Google Scholar 

  93. Wolter, C., Arlinghaus, R.: Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Rev. Fish Biol. Fisher. 13, 63–89 (2003)

    Article  Google Scholar 

  94. Wood, W.A.: High-speed ferry issues for operators and designers. Mar. Technol. SNAME News 37, 230–237 (2000)

    Google Scholar 

  95. Wu, D.M., Wu, T.Y.: Precursor solitons generated by three-dimensional disturbances moving in a channel. In: IUTAM Symposium on Non-linear Water Waves, Tokyo, Japan (1987)

    Google Scholar 

  96. Wu, T.Y.: Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 184, 75–99 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  97. Yih, C.-S., Zhu, S.: Patterns of ship waves. Q. Appl. Math. 47, 17–33 (1989)

    MATH  MathSciNet  Google Scholar 

  98. Yih, C.-S., Zhu, S.: Patterns of ship waves II. Gravity-capillary waves. Q. Appl. Math. 47, 35–44 (1989)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarmo Soomere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soomere, T. (2009). Long Ship Waves in Shallow Water Bodies. In: Quak, E., Soomere, T. (eds) Applied Wave Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00585-5_12

Download citation

Publish with us

Policies and ethics