Skip to main content

MicroRNA: Biogenesis, Regulation, and Role in Primary Brain Tumors

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

MicroRNAs (miRNAs) are approximately 22 nucleotides long, endogenous, single-stranded, non-protein-coding RNA molecules that regulate gene expression. To date, more than 600 distinct human miRNAs have been identified. This chapter reviews the current state of the art concerning the genomic organization of miRNA loci, miRNA biogenesis, and the complex mechanisms involved in the miRNA-mediated regulation of gene expression. A particular focus is placed on the techniques that are currently available to assess miRNA expression levels in cells and tissues, as well as the methods used to specifically modulate miRNA expression in vitro and in vivo. In the past few years, it has become increasingly apparent that certain miRNA species are not only involved in the regulation of physiological processes during development, differentiation, aging, and tissue repair, but are also of paramount importance in the pathogenesis of cancer development and progression. Therefore, this chapter also addresses the role of miRNA aberrations in cancer, with a particular focus on recent findings in primary central nervous system tumors, such as gliomas and medulloblastomas, as well as pituitary adenomas. Although the entire field of miRNA-related research is still rather young, further understanding of the role of miRNAs in brain tumor pathogenesis will not only enhance our knowledge on molecular pathomechanisms, but also promises significant advances in brain tumor diagnostics and individually targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral FC, Torres N, Saggioro F et al. (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323

    CAS  PubMed  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNA are required for methylation of the template chromosome. Dev Cell 7:653–662

    CAS  PubMed  Google Scholar 

  • Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    CAS  PubMed  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T et al. (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    CAS  PubMed  Google Scholar 

  • Berezikov E, Chung WJ, Willis J et al. (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    CAS  PubMed  Google Scholar 

  • Bhattacharyya SN, Habermacher R, Martine U et al. (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    CAS  PubMed  Google Scholar 

  • Blower PE, Chung JH, Verducci JS et al. (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7:1–9

    CAS  PubMed  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    CAS  PubMed  Google Scholar 

  • Bottoni A, Piccin D, Tagliati F et al. (2005) Mir-15a and mir-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285

    CAS  PubMed  Google Scholar 

  • Bottoni A, Zatelli MC, Ferracin M et al. (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377

    CAS  PubMed  Google Scholar 

  • Bueno MJ, de Castro IP, de Cedrón MG et al. (2008) Genetic and epigenetic silencing of microRNA-203 enhances abl1 and bcr-abl1 oncogene expression. Cancer Cell 13:496–506

    CAS  PubMed  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M et al. (2002) Frequent deletions and down-regulation of micro- RNA genes mir-15 and mir-16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    CAS  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    CAS  PubMed  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A et al. (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    CAS  PubMed  Google Scholar 

  • Camps C, Buffa FM, Colella S et al. (2008) Hsa-mir-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348

    CAS  PubMed  Google Scholar 

  • Castoldi M, Benes V, Hentze MW et al. (2007) MiChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods 43:146–152

    CAS  PubMed  Google Scholar 

  • Chan SP, Slack FJ (2007) And now introducing mammalian mirtrons. Dev Cell 13:605–607

    CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    CAS  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS et al. (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50

    CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    PubMed  Google Scholar 

  • Chen Y, Liu W, Chao T et al. (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205

    CAS  PubMed  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E et al. (2005) TRBP recruits the Dicer complex to AGO2 for microRNA processing and gene silencing. Nature 436:740–744

    CAS  PubMed  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X et al. (2007) MicroRNA silencing through RISC recruitment of EIF6. Nature 447:823–828

    CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Ciafrè SA, Galardi S, Mangiola A et al. (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M et al. (2005) Mir-15 and mir-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    CAS  PubMed  Google Scholar 

  • Clop A, Marcq F, Takeda H et al. (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    CAS  PubMed  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R et al. (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered s-TRAIL in human gliomas. Cancer Res 67:8994–9000

    CAS  PubMed  Google Scholar 

  • Cummins JM, He Y, Leary RJ et al. (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103:3687–3692

    CAS  PubMed  Google Scholar 

  • Davis BN, Hilyard AC, Lagna G et al. (2008) SMAD proteins control Drosha-mediated microRNA maturation. Nature 454:56–61

    CAS  PubMed  Google Scholar 

  • Davis S, Propp S, Freier SM et al. (2009) Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 37:70–77

    CAS  PubMed  Google Scholar 

  • Deo M, Yu JY, Chung KH et al. (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235:2538–2548

    CAS  PubMed  Google Scholar 

  • Dews M, Homayouni A, Yu D et al. (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    CAS  PubMed  Google Scholar 

  • Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–1108

    CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M et al. (2008) Mir-148 targets human DNMT3b protein coding region. RNA 14:872–877

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide. RNAs Genes Dev 15:188–200

    CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    CAS  PubMed  Google Scholar 

  • Ferretti E, Smaele ED, Miele E et al. (2008a) Concerted microRNA control of hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627

    CAS  PubMed  Google Scholar 

  • Ferretti E, Smaele ED, Po A et al. (2008b) MicroRNA profiling in human medulloblastoma. Int J Cancer

    Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Gal H, Pandi G, Kanner AA et al. (2008) Mir-451 and imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun 376:86–90

    CAS  PubMed  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A et al. (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130

    CAS  PubMed  Google Scholar 

  • Gonzalez S, Pisano DG, Serrano M (2008) Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7:2601–2608

    CAS  PubMed  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G et al. (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    CAS  PubMed  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N et al. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    CAS  PubMed  Google Scholar 

  • Grimson A, Farh KKH, Johnston WK et al. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    CAS  PubMed  Google Scholar 

  • Guil S, Cáceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of mir-18a. Nat Struct Mol Biol 14:591–596

    CAS  PubMed  Google Scholar 

  • Guo S, Kemphues KJ (1995) Par-1 a gene required for establishing polarity in C. elegans embryos encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    CAS  PubMed  Google Scholar 

  • Hafner M, Landgraf P, Ludwig J et al. (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12

    CAS  PubMed  Google Scholar 

  • Hammond SM, Bernstein E, Beach D et al. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    CAS  PubMed  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA et al. (2001) Argonaute2 a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH et al. (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    CAS  PubMed  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y et al. (2005) A polycistronic microRNA cluster mir-17-92 is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT et al. (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    CAS  PubMed  Google Scholar 

  • Huang J, Liang Z, Yang B et al. (2007) Derepression of microRNA-mediated protein translation inhibition by apolipoprotein b mRNAediting enzyme catalytic polypeptide-like 3g (APOBEC3G): and its family members. J Biol Chem 282:33632–33640

    CAS  PubMed  Google Scholar 

  • Hutvágner G, McLachlan J, Pasquinelli AE et al. (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    PubMed  Google Scholar 

  • Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100

    CAS  PubMed  Google Scholar 

  • Kapeller J, Houghton LA, Mönnikes H et al. (2008) First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor type 3E gene with diarrhea predominant irritable bowel syndrome. Hum Mol Genet 17:2967–2977

    CAS  PubMed  Google Scholar 

  • Karube Y, Tanaka H, Osada H et al. (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115

    CAS  PubMed  Google Scholar 

  • Kedde M, Strasser MJ, Boldajipour B et al. (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    CAS  PubMed  Google Scholar 

  • Kefas B, Godlewski J, Comeau L et al. (2008) microRNA-7 inhibits the Epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572

    CAS  PubMed  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    CAS  PubMed  Google Scholar 

  • Kiriakidou M, Tan GS, Lamprinaki S et al. (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129:1141–1151

    CAS  PubMed  Google Scholar 

  • Kozaki K, Imoto I, Mogi S et al. (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–2105

    CAS  PubMed  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP et al. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    CAS  PubMed  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R et al. (2005) Silencing of microRNAs in vivo with'antagomirs'. Nature 438:685–689

    PubMed  Google Scholar 

  • Krützfeldt J, Kuwajima S, Braich R et al. (2007) Specificity duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35:2885–2892

    PubMed  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE et al. (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    CAS  PubMed  Google Scholar 

  • Kumar MS, Lu J, Mercer KL et al. (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W et al. (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    CAS  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    CAS  PubMed  Google Scholar 

  • Lau P, Verrier JD, Nielsen JA et al. (2008) Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 28:11720–11730

    CAS  PubMed  Google Scholar 

  • le Sage C, Nagel R, Egan DA et al. (2007) Regulation of the p27(kip1): tumor suppressor by mir-221 and mir-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    PubMed  Google Scholar 

  • Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4: [Epub ahead of print]

    Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Lee Y, Jeon K, Lee JT et al. (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    CAS  PubMed  Google Scholar 

  • Lee Y, Ahn C, Han J et al. (2003) The nuclear RNAse III Drosha initiates microRNA processing. Nature 425:415–419

    CAS  PubMed  Google Scholar 

  • Lee R, Feinbaum R, Ambros V (2004) A short history of a short RNA. Cell 116:S89–S92; 1 p following S96

    CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing often flanked by adenosines indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    CAS  PubMed  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ et al. (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    CAS  PubMed  Google Scholar 

  • Liu CG, Spizzo R, Calin GA et al. (2008) Expression profiling of microRNA using oligo DNA arrays. Methods 44:22–30

    PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    CAS  PubMed  Google Scholar 

  • Ma LH, Liu H, Xiong H et al. (2007) Aberrant transcriptional regulation of the MLL fusion partner EEN by AML1-ETO and its implication in leukemogenesis. Blood 109:769–777

    CAS  PubMed  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA et al. (2007) The microRNA mir-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    CAS  PubMed  Google Scholar 

  • Maniataki E, Mourelatos Z (2005) A human atpindependent Risc assembly machine fueled by pre-miRNA. Genes Dev 19:2979–2990

    CAS  PubMed  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and HMGA2 enhances oncogenic transformation. Science 315:1576–1579

    CAS  PubMed  Google Scholar 

  • Megraw M, Sethupathy P, Corda B et al. (2007) MirGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35(Database issue): D149–D155

    CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A et al. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    CAS  PubMed  Google Scholar 

  • Mestdagh P, Feys T, Bernard N et al. (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36:e143

    PubMed  Google Scholar 

  • Michael MZ, Connor SMO, van Holst Pellekaan NG et al. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    CAS  PubMed  Google Scholar 

  • Mishra PJ, Humeniuk R, Mishra PJ et al. (2007) A mir-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 104:13513–13518

    CAS  PubMed  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Townsend M et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    PubMed  Google Scholar 

  • Mourelatos Z, Dostie J, Paushkin S et al. (2002) MiRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed  Google Scholar 

  • Nass D, Rosenwald S, Meiri E et al. (2008) Mir-92b and mir-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol [Epub ahead of print]

    Google Scholar 

  • Nelson PT, Baldwin DA, Scearce LM et al. (2004) Microarray-based high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    CAS  PubMed  Google Scholar 

  • Nelson PT, Baldwin DA, Kloosterman WPN et al. (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191

    CAS  PubMed  Google Scholar 

  • Obernosterer G, Leuschner PJF, Alenius M et al. (2006) Post-transcriptional regulation of microRNA expression. RNA 12:1161–1167

    CAS  PubMed  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI et al. (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    PubMed  Google Scholar 

  • Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26:611–623

    CAS  PubMed  Google Scholar 

  • Petersen CP, Bordeleau ME, Pelletier J et al. (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542

    CAS  PubMed  Google Scholar 

  • Pierson J, Hostager B, Fan R et al. (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90:1–7

    CAS  PubMed  Google Scholar 

  • Pillai RS, Artus CG, Filipowicz W (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10:1518–1525

    CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG et al. (2005) Inhibition of translational initiation by let-7 microRNA in human cells. Science 309:1573–1576

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al. (2002) Prediction of plant microRNA targets. Cell 110:513–520

    CAS  PubMed  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL et al. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    CAS  PubMed  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G et al. (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene Bcl6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    CAS  PubMed  Google Scholar 

  • Samols MA, Skalsky RL, Maldonado AM et al. (2007) Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3:e65

    PubMed  Google Scholar 

  • Scherr M, Venturini L, Battmer K et al. (2007) Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res 35:e149

    PubMed  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T et al. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I et al. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    PubMed  Google Scholar 

  • Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R et al. (2008) Mir-q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol 9:34

    PubMed  Google Scholar 

  • Shi L, Cheng Z, Zhang J et al. (2008) Hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236C:185–193

    Google Scholar 

  • Silber J, Lim DA, Petritsch C et al. (2008) Mir-124 and mir-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    PubMed  Google Scholar 

  • Stegmeier F, Hu G, Rickles RJ et al. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102:13212–13217

    CAS  PubMed  Google Scholar 

  • Sylvestre Y, Guire VD, Querido E et al. (2007) An e2f/mir-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143

    CAS  PubMed  Google Scholar 

  • Szafranska AE, Davison TS, John J et al. (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26:4442–4452

    CAS  PubMed  Google Scholar 

  • Takada S, Berezikov E, Yamashita Y et al. (2006) Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Res 34:e115

    PubMed  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    CAS  PubMed  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B et al. (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: mir-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    CAS  PubMed  Google Scholar 

  • Thomson JM, Newman M, Parker JS et al. (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:2202–2207

    CAS  PubMed  Google Scholar 

  • Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3:36–43

    CAS  PubMed  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    CAS  PubMed  Google Scholar 

  • Valadi H, Ekström K, Bossios A et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    CAS  PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M et al. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    CAS  PubMed  Google Scholar 

  • Würdinger T, Tannous BA, Saydam O et al. (2008) Mir-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393

    PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    CAS  PubMed  Google Scholar 

  • Yi R, Qin Y, Macara IG et al. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    CAS  PubMed  Google Scholar 

  • Yin JQ, Zhao RC, Morris KV (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26:70–76

    CAS  PubMed  Google Scholar 

  • Yu J, Ryan DG, Getsios S et al. (2008) MicroRNA-184 antagonizes microRNA-205 to maintain Ship2 levels in epithelia. Proc Natl Acad Sci USA 105:19300–19305

    CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N et al. (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141

    CAS  PubMed  Google Scholar 

  • Zhang WH, Poh A, Fanous A et al. (2008) DNA damage induced S phase arrest in human breast cancer depends on Chk1 but G2 arrest can occur independently of Chk1 Chk2 or MAPKAPK2. Cell Cycle 7:1668–1677

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chao T, Li R et al. (2009) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87:43–51

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Reifenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malzkorn, B., Wolter, M., Reifenberger, G. (2009). MicroRNA: Biogenesis, Regulation, and Role in Primary Brain Tumors. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_15

Download citation

Publish with us

Policies and ethics