Skip to main content

Modeling Structural Heterogeneity in Proteins from X-Ray Data

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

In a crystallographic experiment, a protein is precipitated to obtain a crystalline sample (crystal) containing many copies of the molecule. An electron density map (edm) is calculated from diffraction images obtained from focusing X-rays through the sample at different angles. This involves iterative phase determination and density calculation. The protein conformation is modeled by placing the atoms in 3-D space to best match the electron density. In practice, the copies of a protein in a crystal are not exactly in the same conformation. Consequently the obtained edm, which corresponds to the cumulative distribution of atomic positions over all conformations, is blurred. Existing modeling methods compute an “average” protein conformation by maximizing its fit with the edm and explain structural heterogeneity in the crystal with a harmonic distribution of the position of each atom. However, proteins undergo coordinated conformational variations leading to substantial correlated changes in atomic positions. These variations are biologically important. This paper presents a sample-select approach to model structural heterogeneity by computing an ensemble of conformations (along with occupancies) that, collectively, provide a near-optimal explanation of the edm. The focus is on deformable protein fragments, mainly loops and side-chains. Tests were successfully conducted on simulated and experimental edms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonine, P.V., Kunstleve, R.W.G., Adams, P.D.: The phenix refinement framework. CCP4 newsletter 42 (2005)

    Google Scholar 

  2. Berman, H.M., Henrick, K., Nakamura, H., Arnold, E.: Reply to: Is one solution good enough? Nature Structural and Molecular Biology 13, 185 (2006)

    Article  Google Scholar 

  3. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research, 235–242 (2000)

    Google Scholar 

  4. Burling, F.T., Weis, W.I., Flaherty, K.M., Brunger, A.T.: Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271(5245), 72–77 (1996)

    Article  Google Scholar 

  5. Coutsias, E.A., Seok, C., Jacobson, M.P., Dill, K.A.: A kinematic view of loop closure. Journal of Computational Chemistry 25(4), 510–528 (2004)

    Article  Google Scholar 

  6. Davis, I.W., Arendall, W.B., Richardson, D.C., Richardson, J.S.: The backrub motion: How protein backbone shrugs when a sidechain dances. Structure 14, 265–274 (2006)

    Article  Google Scholar 

  7. DePristo, M.A., de Bakker, P.I., Blundell, T.L.: Heterogeneity and inaccuracy in protein structures solved by x-ray crystallography. Structure 12, 831–838 (2004)

    Article  Google Scholar 

  8. Dhanik, A., Yao, P., Marz, N., Propper, R., Kou, C., Liu, G., van den Bedem, H., Latombe, J.C.: Efficient algorithms to explore conformation spaces of flexible protein loops. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 265–276. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. DiMaio, F., Kondrashov, D.A., Bitto, E., Soni, A., Bingman, C.A., Phillips Jr., G.N., Shavlik, J.W.: Creating protein models from electron-density maps using particle-filtering methods. Bioinformatics 23(21), 2851–2858 (2007)

    Article  Google Scholar 

  10. DiMaio, F., Shavlik, J., Phillips, G.N.: A probabilistic approach to protein backbone tracing in electron density maps. Bioinformatics 22(14), e81–e89 (2006)

    Article  Google Scholar 

  11. Drenth, J.: Principles of protein X-ray crystallography. Springer, New York (1999)

    Google Scholar 

  12. Frauenfelder, H., Sligar, S.G., Wolynes, P.G.: The energy landscapes and motions of proteins. Science 254(5038), 1598–1603 (1991)

    Article  Google Scholar 

  13. Furnham, N., Blundell, T.L., DePristo, M.A., Terwilliger, T.C.: Is one solution good enough? Nature Structure Molecular Biology 13(3), 184–185 (2006)

    Article  Google Scholar 

  14. Heimer, R.L.: The common optimization interface for operations research: promoting open-source software in the operations research community. IBM Journal of Research and Development 47(1), 57–66 (2003)

    Article  Google Scholar 

  15. Ioerger, T., Sacchettini, J.: The textal system: Artificial intelligence techniques for automated protein model building. In: Carter, C.W., Sweet, R.M. (eds.) Methods in Enzymology, pp. 244–270. Springer, Heidelberg (2003)

    Google Scholar 

  16. Kuriyan, J., Petsko, G.A., Levy, R.M., Karplus, M.: Effect of anisotropy and anharmonicity on protein crystallographic refinement: An evaluation by molecular dynamics. Proteins: Structure, Function, and Bioinformatics 190, 227–254 (1986)

    Google Scholar 

  17. Levin, E.J., Kondrashov, D.A., Wesenberg, G.E., Phillips Jr., G.N.: Ensemble refinement of protein crystal structures: validation and application. Structure 15, 1040–1052 (2007)

    Article  Google Scholar 

  18. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penultimate rotamer library. Proteins: Structure, Function, and Bioinformatics 40(3), 389–408 (2000)

    Article  Google Scholar 

  19. Okazaki, K.-I., Koga, N., Takada, S., Onuchic, J.N., Wolynes, P.G.: Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations. PNAS 103, 11844–11849 (2006)

    Article  Google Scholar 

  20. Perrakis, A., Sixma, T.K., Wilson, K.S., Lamzin, V.S.: wARP: Improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallographica D 53, 448–455 (1997)

    Google Scholar 

  21. Read, R.J.: Improved fourier coefficients for maps using phases from partial structures with errors. Acta Crystallographica A 42, 140–149 (1986)

    Article  Google Scholar 

  22. Schomaker, V., Trueblood, K.N.: On the rigid-body motion of molecules in crystals. Acta Crystallographica B 24, 63 (1968)

    Article  Google Scholar 

  23. Terwilliger, T.C.: Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallographica D 59, 38–44 (2003)

    Google Scholar 

  24. Terwilliger, T.C.: Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement. Acta Crystallographica D 59, 1174–1182 (2003)

    Google Scholar 

  25. Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Adams, P.D., Moriarty, N.W., Zwart, P., Read, R.J., Turk, D., Hung, L.-W.: Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models. Acta Crystallographica D 63, 597–610 (2007)

    Google Scholar 

  26. Tosatto, S.C.E., Bindewald, E., Hesser, J., Manner, R.: A divide and conquer approach to fast loop modeling. Protein Engineering 15(4), 279–286 (2002)

    Article  Google Scholar 

  27. van den Bedem, H., Lotan, I., Latombe, J.C., Deacon, A.M.: Real-space protein-model completion: an inverse-kinematics approach. Acta Crystallographica D 61, 2–13 (2005)

    Google Scholar 

  28. Vitkup, D., Ringe, D., Karplus, M., Petsko, G.A.: Why protein R-factors are so large: A self-consistent analysis. Proteins: Structure, Function, and Genetics 46, 345–354 (2002)

    Article  Google Scholar 

  29. Wilson, M.A., Brunger, A.T.: The 1.0 Å crystal structure of Ca2+-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. Journal of Molecular Biology 301(5), 1237–1256 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhanik, A., van den Bedem, H., Deacon, A., Latombe, J.C. (2009). Modeling Structural Heterogeneity in Proteins from X-Ray Data. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics