Skip to main content

Sordaria macrospora, a Model System for Fungal Development

  • Chapter
  • First Online:
Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

The homothallic ascomycete Sordaria macrospora has a long-standing history as a classic genetic model system for conventional tetrad analysis. Further, it serves as a model organism to investigate the formation of fruiting bodies that are generated during the sexual life cycle of this filamentous fungus. The application of several molecular tools, such as DNA-mediated transformation, site-specific recombination or functional genomics to this filamentous fungus makes it an ideal experimental system to uncover the details of multicellular development. The rapid and inexpensive genetic analysis of developmental mutants with distinct and defined morphological defects, together with fluorescence microscopy of recombinant strains carrying GPF-tagged developmental proteins should further unravel the spatio-temporal network of regulatory factors. The sum of these investigations will contribute to our understanding of multicellular differentiation processes in eukaryotic model organisms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auerswald B (1866) Sordaria macrospora. Hedwigia 5:192

    Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    CAS  PubMed  Google Scholar 

  • Bölker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25:143–156

    PubMed  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    CAS  PubMed  Google Scholar 

  • Botstein D, Fink GR (1988) Yeast: an experimental organism for modern biology. Science 240:1439–1443

    CAS  PubMed  Google Scholar 

  • Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15

    CAS  PubMed  Google Scholar 

  • Bruhn L, Sprague GFJ (1994) MCM1 point mutants deficient in expression of alpha-specific genes: residues important for interaction with alpha 1. Mol Cell Biol 14:2534–2544

    CAS  PubMed  Google Scholar 

  • Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycol Res 110:137–150

    CAS  PubMed  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Nat Acad Sci USA 103:10352–10357

    CAS  PubMed  Google Scholar 

  • Coppin E, de Renty C, Debuchy R (2005) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot Cell 4:407–420

    CAS  PubMed  Google Scholar 

  • D'Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364

    PubMed  Google Scholar 

  • Davis RH, Perkins DD (2002) Timeline: Neurospora: a model of model microbes. Nat Rev Genet 3:397–403

    CAS  PubMed  Google Scholar 

  • Debuchy R, Coppin E (1992) The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol Gen Genet 233:113–121

    CAS  PubMed  Google Scholar 

  • Debuchy R, Turgeon BG (2006) Mating-type structure, evolution, and function in euascomycetes. In: Kües U, Fischer R (eds.) Growth, differentiation and sexuality. Springer, Heidelberg pp 293–323

    Google Scholar 

  • Debuchy R, Arnaise S, Lecellier G (1993) The mat- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol Gen Genet 241:667–673

    CAS  PubMed  Google Scholar 

  • Dohlman HG (2002) G proteins and pheromone signaling. Annu Rev Physiol 64:129–152

    CAS  PubMed  Google Scholar 

  • Dolan JW, Kirkman C, Fields S (1989) The Yeast STE12 protein binds to the DNA sequence mediating pheromone induction. Proc Natl Acad Sci USA 86:5703–5707

    CAS  PubMed  Google Scholar 

  • Elleuche S, Pöggeler S (2008) Visualization of peroxisomes via SKL-tagged DsRed protein in Sordaria macrospora. Fungal Genet Rep 55:9–12

    Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    CAS  PubMed  Google Scholar 

  • Engh I, Nowrousian M, Kück U (2007a) Regulation of melain biosynthesis via the dihydroxynaphtalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett 275:62–70

    CAS  Google Scholar 

  • Engh I, Würtz C, Witzel-Schlömp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kück U (2007b) The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell 6:831–843

    CAS  Google Scholar 

  • Eriksson OE, Baral HO, Currah RS, Hansen K, Kurtzmann CP, Rambold G, Klassoe T (2004) Outline of ascomycota – 2004. Myconet 10:1–99

    Google Scholar 

  • Esser K, Straub J (1958) Genetische Untersuchungen an Sordaria macrospora Auersw.: Kompensation und Induktion bei genbedingten Entwicklungsdefekten. Z Vererbungsl 89:729–746

    CAS  PubMed  Google Scholar 

  • Esser K (1982) Cryptogams – cyanobacteria, algae, fungi, lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • Ferreira AV, Saupe S, Glass NL (1996) Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. Mol Gen Genet 250:767–774

    CAS  PubMed  Google Scholar 

  • Ferreira AV, An Z, Metzenberg RL, Glass NL (1998) Characterization of mat A-2, mat A-3 and deltamatA mating-type mutants of Neurospora crassa. Genetics 148:1069–1079

    CAS  PubMed  Google Scholar 

  • Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi – interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68:813–826

    CAS  PubMed  Google Scholar 

  • Fleißner A, Glass NL (2007) SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell 6:94–94

    Google Scholar 

  • Fleissner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL (2005) The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4:920–930

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    CAS  PubMed  Google Scholar 

  • Glass NL, Grotelueschen J, Metzenberg RL (1990a) Neurospora crassa A mating-type region. Proc Natl Acad Sci USA 87:4912–4916

    CAS  Google Scholar 

  • Glass NL, Metzenberg RL, Raju NB (1990b) Homothallic Sordariaceae from nature: The absence of strains containing only the a mating type sequence. Exp Mycol 14:274–289

    Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    CAS  PubMed  Google Scholar 

  • Harris SD, Momany M (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391–400

    CAS  PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    CAS  PubMed  Google Scholar 

  • Heslot H (1958) Contribution à l'étude cytogénétique des Sordariacées. Rev Cytol Biol Veg 19:1–235

    Google Scholar 

  • Hoff B, Kück U (2006) Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newsl 53:9–11

    Google Scholar 

  • Huhndorf SM, Miller AN, Fernandez F (2004) Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia 96: 368–387

    CAS  PubMed  Google Scholar 

  • Jacobsen S, Wittig M, Pöggeler S (2002) Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora. Curr Genet 41:150–158

    CAS  PubMed  Google Scholar 

  • Kamerewerd J, Jansson M, Nowrousian M, Pöggeler S, Kück U (2008) Three alpha subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in a homothallic fungus. Genetics 180:191–206

    CAS  PubMed  Google Scholar 

  • Kays AM, Rowley PS, Baasiri RA, Borkovich KA (2000) Regulation of conidiation and adenylyl cyclase levels by the Galpha protein GNA-3 in Neurospora crassa. Mol Cell Biol 20:7693–7705

    CAS  PubMed  Google Scholar 

  • Kim H, Borkovich KA (2004) A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52:1781–1798

    CAS  PubMed  Google Scholar 

  • Kim H, Borkovich KA (2006) Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot Cell 5:544–554

    CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Staplers JA (2001) Ainsworth & Bisby's dictionary of the fungi. CABI International, Wallingford

    Google Scholar 

  • Krügel HG, Fiedler G, Smith C, Baumberg S (1993) Sequence and transcriptional analysis of the nourseothricin acetyltransferase-encoding gene nat1 from Streptomyces noursei. Gene 127:127–131

    PubMed  Google Scholar 

  • Kück U (2005) A Sordaria macrospora mutant lacking the leu1 gene shows a developmental arrest during fruiting body formation. Mol Genet Genomics 274:307–315

    PubMed  Google Scholar 

  • Kück U, Pöggeler S (2004) pZHK2, a bi-functional transformation vector, suitable for two step gene targeting. Fungal Genet Newsl 51:4–6

    Google Scholar 

  • Kück U, Pöggeler S (2005) Sordaria macrospora. In: Gellissen G (ed) Production of recombinant proteins. Wiley-VCH, Weinheim, pp 215–231

    Google Scholar 

  • Le Chevanton L, Leblon G, Lebilcot S (1989) Duplications created by transformation in Sordaria macrospora are not inactivated during meiosis. Mol Gen Genet 218:390–396

    CAS  PubMed  Google Scholar 

  • Lengeler KB, Davidson RC, D'Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    CAS  PubMed  Google Scholar 

  • Lin X, Heitman J (2007) Mechanisms of homothallism in fungi and transitions between heterothallism and homothallism. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi. ASM, Washington, D.C., pp 35–57

    Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604

    CAS  PubMed  Google Scholar 

  • Madhani HD, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317

    CAS  PubMed  Google Scholar 

  • Markham P, Collinge AJ (1987) Woronin bodies of filamentous fungi. FEMS Microbiol Lett 46:1–11

    Google Scholar 

  • Masloff S, Pöggeler S, Kück U (1999) The pro1+ gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics 152:191–199

    CAS  PubMed  Google Scholar 

  • Masloff S, Jacobsen S, Pöggeler S, Kück U (2002) Functional analysis of the C6 zinc finger gene pro1 involved in fungal sexual development. Fungal Genet Biol 36:107–116

    CAS  PubMed  Google Scholar 

  • Mayrhofer S, Pöggeler S (2005) Functional characterization of an α-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. Eukaryot Cell 4:661–672

    CAS  PubMed  Google Scholar 

  • Mayrhofer S, Weber JM, Pöggeler S (2006) Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics 172:1521–1533

    CAS  PubMed  Google Scholar 

  • Metzenberg RL, Glass NL (1990) Mating type and mating strategies in Neurospora. Bioessays 12:53–59

    CAS  PubMed  Google Scholar 

  • Mouriño-Pérez RR, Roberson RW, Bartnicki-García S (2006) Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet Biol 43:389–400

    PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    CAS  PubMed  Google Scholar 

  • Nolting N, Pöggeler S (2006a) A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol Microbiol 62:853–868

    CAS  Google Scholar 

  • Nolting N, Pöggeler S (2006b) A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryot Cell 5:1043–1056

    CAS  Google Scholar 

  • Nowrousian M (2007) Of patterns and pathways: microarray technologies for the analysis of filamentous fungi. Fungal Biol Rev 21:171–178

    Google Scholar 

  • Nowrousian M (2009) A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis in the filamentous fungi Sordaria macrospora and Neurospora crassa. Curr Genet (in press)

    Google Scholar 

  • Nowrousian M, Cebula P (2005) The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora. BMC Microbiol 5:64

    PubMed  Google Scholar 

  • Nowrousian M, Kück U (1998) Isolation and cloning of the Sordaria macrospora ura3 gene and its heterologous expression in Aspergillus niger. Fungal Genet Newsl 45:34–37

    Google Scholar 

  • Nowrousian M, Masloff S, Pöggeler S, Kück U (1999) Cell differentiation during sexual development of the fungus Sordaria macrospora requires ATP citrate lyase activity. Mol Cell Biol 19:450–460

    CAS  PubMed  Google Scholar 

  • Nowrousian M, Dunlap JC, Nelson MA (2004a) Functional genomics in fungi. In: Kück U (ed) The Mycota II. Springer, Heidelberg, pp 115–128

    Google Scholar 

  • Nowrousian M, Würtz C, Pöggeler S, Kück U (2004b) Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Fungal Genet Biol 41:285–292

    CAS  Google Scholar 

  • Nowrousian M, Ringelberg C, Dunlap JC, Loros JJ, Kück U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Genet Genomics 273:137–149

    CAS  PubMed  Google Scholar 

  • Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U (2007a) The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 64:923–937

    CAS  Google Scholar 

  • Nowrousian M, Piotrowski M, Kück U (2007b) Multiple layers of temporal and spatial control regulate accumulation of the fruiting body-specific protein APP in Sordaria macrospora and Neurospora crassa. Fungal Genet Biol 44:602–614

    CAS  Google Scholar 

  • Ohneda M, Arioka M, Kitamoto K (2005) Isolation and characterization of Aspergillus oryzae vacuolar protein sorting mutants. Appl Environ Microbiol 71:4856–4861

    CAS  PubMed  Google Scholar 

  • Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25:451–452

    CAS  PubMed  Google Scholar 

  • Pastwa E, Blasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50:891–908

    CAS  PubMed  Google Scholar 

  • Pöggeler S (1999) Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes. Curr Genet 36:222–231

    PubMed  Google Scholar 

  • Pöggeler S (2000) Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr Genet 37:403–411

    PubMed  Google Scholar 

  • Pöggeler S, Kück U (2000) Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol Gen Genet 236:292–301

    Google Scholar 

  • Pöggeler S, Kück U (2001) Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:9–17

    PubMed  Google Scholar 

  • Pöggeler S, Kück U (2004) A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot Cell 3:232–240

    PubMed  Google Scholar 

  • Pöggeler S, Kück U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10

    PubMed  Google Scholar 

  • Pöggeler S, Nowrousian M, Jacobsen S, Kück U (1997a) An efficient procedure to isolate fungal genes from an indexed cosmid library. J Microbiol Meth 29:49–61

    Google Scholar 

  • Pöggeler S, Risch S, Kück U, Osiewacz HD (1997b) Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567–580

    Google Scholar 

  • Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61

    PubMed  Google Scholar 

  • Pöggeler S, Nowrousian M, Kück U (2006a) Fruiting body development in ascomycetes. In: Kües U, Fischer R (eds) Growth, differentiation and sexuality. Springer, Heidelberg, pp 325–355

    Google Scholar 

  • Pöggeler S, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Kück U (2006b) Microarray and real time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Genet Genomics 275:492–503

    Google Scholar 

  • Raymond CK, Pownder TA, Sexson SL (1999) General method for plasmid construction using homologous recombination. Biotechniques 26:140–141

    Google Scholar 

  • Rech C, Engh I, Kück U (2007) Detection of hyphal fusion in filamentous fungi using differently fluorescene-labeled histones. Curr Genet 52:259–266

    CAS  PubMed  Google Scholar 

  • Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    CAS  PubMed  Google Scholar 

  • Robertson SJ, Bond DJ, Read ND (1998) Homothallism and heterothallism in Sordaria brevicollis. Mycol Res 102:1215–1223

    Google Scholar 

  • Ruprich-Robert G, Berteaux-Lecellier V, Zickler D, Panvier-Adoutte A, Picard M (2002) Identification of six loci in which mutations partially restore peroxisome biogenesis and/or alleviate the metabolic defect of pex2 mutants in Podospora. Genetics 161:1089–1099

    CAS  PubMed  Google Scholar 

  • Staben C, Yanofsky C (1990) Neurospora crassa a mating-type region. Proc Natl Acad Sci USA 87:4917–4921

    CAS  PubMed  Google Scholar 

  • Storlazzi A, Tessé S, Gargano S, James F, Kleckner NDZ (2003) Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 17:2675–2687

    CAS  PubMed  Google Scholar 

  • Storlazzi A, Tesse S, Ruprich-Robert G, Gargano S, Poggeler S, Kleckner N, Zickler D (2008) Coupling meiotic chromosome axis integrity to recombination. Genes Dev 22:796–809

    CAS  PubMed  Google Scholar 

  • Tessé S, Storlazzi A, Kleckner N, Gargano SDZ (2003) Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Nat Acad Sci USA 100:12865–12870

    PubMed  Google Scholar 

  • Thompson-Coffe C, Zickler D (1992) Three microtubule-organizing centers are required for ascus growth and sporulation in the fungus Sordaria macrospora. Cell Motil Cytoskeleton 22:257–273

    Google Scholar 

  • Thompson-Coffe C, Zickler D (1993) Cytoskeleton interactions in the ascus development and sporulation of Sordaria macrospora. J Cell Sci 104:883–898

    CAS  Google Scholar 

  • Turgeon BG (1998) Application of mating type gene technology to problems in fungal biology. Annu Rev Phytopathol 36:115–137

    CAS  PubMed  Google Scholar 

  • Turina M, Prodi A, Alfen NK (2003) Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 40:242–251

    CAS  PubMed  Google Scholar 

  • van Heemst D, James F, Pöggeler S, Berteaux-Lecellier V, Zickler D (1999) Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meiotic programs. Cell 98:261–271

    PubMed  Google Scholar 

  • Vienken K, Fischer R (2006) The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol Microbiol 61:544–554

    CAS  PubMed  Google Scholar 

  • Voigt K, Cozijnsen AJ, Kroymann J, Pöggeler S, Howlett BJ (2005) Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and beta-tubulin sequences. Mol Phylogenet Evol 37:541–557

    CAS  PubMed  Google Scholar 

  • Walz M, Kück U (1995) Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis. Curr Genet 29:88–95

    CAS  PubMed  Google Scholar 

  • Wik L, Karlsson M, Johannesson H (2008) The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa. BMC Evol Biol 8:109

    PubMed  Google Scholar 

  • Xiang Q, Rasmussen C, Glass NL (2002) The ham-2 locus, encoding a putative transmembrane protein, is required for hyphal fusion in Neurospora crassa. Genetics 160:169–180

    CAS  PubMed  Google Scholar 

  • Yuan YO, Stroke IL, Fields S (1993) Coupling of cell identity to signal response in yeast: interaction between the alpha 1 and STE12 proteins. Genes Dev 1584–1597

    Google Scholar 

  • Zickler D (1977) Development of the synaptonemal complex and the “recombination nodules” during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61:289–316

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

We thank Ms. Gabriele Frenßen-Schenkel for artwork, Ms. Melanie Mees for typing the manuscript and Dr. Sandra Masloff for preparing scanning electron microscopic images from developmental mutants. The work of the authors is substantially supported by funding from the Deutsche Forschungsgemeinschaft (Bonn-Bad Godesberg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kück, U., Pöggeler, S., Nowrousian, M., Nolting, N., Engh, I. (2009). Sordaria macrospora, a Model System for Fungal Development. In: Anke, T., Weber, D. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00286-1_2

Download citation

Publish with us

Policies and ethics